30

Ok, ça ne m'étonne pas plus que ça en fait grin

quand j'aurais un peu plus de temps, je testerai tout de même sur quelques codes à moi, pour voir happy
avatar
<<< Kernel Extremis©®™ >>> et Inventeur de la différence administratif/judiciaire ! (©Yoshi Noir)

<Vertyos> un poil plus mais elle suce bien quand même la mienne ^^
<Sabrina`> tinkiete flan c juste qu'ils sont jaloux que je te trouve aussi appétissant

31

Mise à jour des bench:
LLVM build 2.5
MAY V0.7.3 (GMP V4.3.0 MPFR V2.3.2 CC=llvm-gcc CFLAGS=-fexceptions -O3 -fomit-frame-pointer -funroll-loops -ffast-math -march=native -ffunction-sections -fdata-sections)
Start -- Base:0x815c000 Top:0x815c160 Used:352 MaxUsed:352 Max:2113929216
Construct (3*(a*x+b*y+c*z) with a=1/2, b=2/3 and c=4/5...0.00320ms [312500 execs/sec]
eval (sum ai*ai*ai) - quite different - N=100......0.03ms
eval (sum ai*ai*ai) -  quite similar  - N=100......0.03ms
eval (sum ai*ai*ai) - quite different - N=1000......0.36ms
eval (sum ai*ai*ai) -  quite similar  - N=1000......0.36ms
eval (sum ai*ai*ai) - quite different - N=10000......1.71ms
eval (sum ai*ai*ai) -  quite similar  - N=10000......2.00ms
eval (sum ai*ai*ai) - quite different - N=100000......56.00ms
eval (sum ai*ai*ai) -  quite similar  - N=100000......56.00ms
eval (sum ai*ai*ai) - quite different - N=1000000......692.00ms
eval (sum ai*ai*ai) -  quite similar  - N=1000000......804.00ms
eval(sum(i*x^i, n=0..20000)...12ms
eval(x+f(x)+f(f(x))+...+f(5000)(x)), subs f to id...904ms
eval(sum(i,i=0..20000)+x+sum(i,i=0..20000))...4ms
eval(sum(sin(n*PI/6), n=0..20000)...36ms
eval((2+3*I/4)^1000000)...536ms
evalf(sin(1+PI)^2+3^sqrt(1+PI^2)) to 100000 bits...380ms
expand ((a0+...a500)^2), replace a0, reeval...812ms
expand ((x0+...x2+1)^16*(1+(x0+...x2+1)^16))...80ms
expand ((x0+...x3+1)^20*(1+(x0+...x3+1)^20))...7553ms
expand ((x+y^400000000000+z)^20*(1+x+y+z^-1)^20)...972ms
expand ((1+x)^1000*(2+x)^1000)...600ms
expand ((17+x)^600*(42+x)^600)...576ms
expand ((1+sqrt(5))^65000)...12ms
expand ((1+x+y)^500)...1596ms
expand (expand((1+x)^50*(1+y)^50) * expand((1-x)^50*(2-y)^50))...264ms
expand (expand((a+b+c+d+e+f+g+h)^5) * expand((a+b+c+d+e+f+g+h)^5))...688ms
expand ((1+x+...+x^65535)*(1+2*x+x^2+...+x^65535))...14537ms
divide ( (1+x)^1000+1 , (1-x)^500, x)...444ms
divide ( (1+x)^1000+1 , x^3-5*x+17, x)...4ms
divide ( (1+x+y^2)^50+1 , (1-x)^25+y, x)...28ms
divide ( (1+x+y^2)^25+1 , x^3*y-5*x*y^42+17*y+1, x)...0ms
divide ( (1+x+y^2)^50+1 , (1-x)^25+y, {x,y})...1080ms
divide ( (1+x+y^2)^25+1 , x^3*y-5*x*y^42+17*y+1, {x,y})...1504ms
       gcd ( (1+2*x)^200*(x^3+2*x^2+1) , (1+2*x)^42*(x^3-2*x+42) )...8ms
expand+gcd ( (1+2*x)^200*(x^3+2*x^2+1) , (1+2*x)^42*(x^3-2*x+42) )...24ms
       gcd ( (1+2*x)^200*(x^3+2*x^2+1) , (1+2*x)^42*(x^3-2*x+42)+1 )...20ms
expand+gcd ( (1+2*x)^200*(x^3+2*x^2+1) , (1+2*x)^42*(x^3-2*x+42)+1 )...20ms
       gcd ( (1+2*x+y)^100*(x^3+2*x^2*y+1) , (1+2*x+y)^42*(x^3-2*x+42) )...4ms
expand+gcd ( (1+2*x+y)^100*(x^3+2*x^2*y+1) , (1+2*x+y)^42*(x^3-2*x+42) )...5741ms
       gcd ( (x^2-3*x*y+y^2)^4*(3*x-7*y+2)^5 , (x^2-3*x*y+y^2)^3*(3*x-7*y-2)^6 )...0ms
expand+gcd ( (x^2-3*x*y+y^2)^4*(3*x-7*y+2)^5 , (x^2-3*x*y+y^2)^3*(3*x-7*y-2)^6 )...4ms
       gcd ( (7*y*x^2*z^2-3*x*y*z+11*(x+1)*y^2+5*z+1)^4*(3*x.. , (7*y*x^2*z^2-3*x*y*z+11*(x+1)*y^2+5*z+1)^3*(3*x.. )...4ms
expand+gcd ( (7*y*x^2*z^2-3*x*y*z+11*(x+1)*y^2+5*z+1)^4*(3*x.. , (7*y*x^2*z^2-3*x*y*z+11*(x+1)*y^2+5*z+1)^3*(3*x.. )...120ms
       gcd ( (x^2-y^2)*(a+b)^10 , (x-y)*(a-c)^10 )...0ms
expand+gcd ( (x^2-y^2)*(a+b)^10 , (x-y)*(a-c)^10 )...0ms
       gcd ( (x-y)^50+a , (x+y)^50 )...4ms
expand+gcd ( (x-y)^50+a , (x+y)^50 )...0ms
       gcd ( -2107-7967*x+19271*x^50+551*x^49-39300*x^48+236.. , -2401-3773*x-9484*x^50-4086*x^49-31296*x^48-216.. )...4ms
       gcd ( -1368+2517*x-62928*x^500+126728*x^499-139637*x^.. , -6336-11784*x+4932*x^500+50975*x^499+97099*x^49.. )...224ms
       gcd ( 3772-5709*x-28359*x^500+38352*x^499-18303*x^498.. , -3680-4456*x+90816*x^500+35952*x^499+89870*x^49.. )...880ms
Compute GCD in Z/181Z
       gcd ( (1+2*x)^400*(x^3+2*x^2+1) , (1+2*x)^42*(x^3-2*x+42) )...4ms
expand+gcd ( (1+2*x)^400*(x^3+2*x^2+1) , (1+2*x)^42*(x^3-2*x+42) )...8ms
       gcd ( (1+2*x)^400*(x^3+2*x^2+1) , (1+2*x)^42*(x^3-2*x+42)+1 )...20ms
expand+gcd ( (1+2*x)^400*(x^3+2*x^2+1) , (1+2*x)^42*(x^3-2*x+42)+1 )...12ms
       gcd ( (1+2*x+y)^100*(x^3+2*x^2*y+1) , (1+2*x+y)^42*(x^3-2*x+42) )...8ms
expand+gcd ( (1+2*x+y)^100*(x^3+2*x^2*y+1) , (1+2*x+y)^42*(x^3-2*x+42) )...2712ms
       gcd ( (x^2-3*x*y+y^2)^4*(3*x-7*y+2)^5 , (x^2-3*x*y+y^2)^3*(3*x-7*y-2)^6 )...0ms
expand+gcd ( (x^2-3*x*y+y^2)^4*(3*x-7*y+2)^5 , (x^2-3*x*y+y^2)^3*(3*x-7*y-2)^6 )...32ms
Compute GCD in Z/43051Z
       gcd ( -936639990+26248623452*x^47-30174373832*x^46-19.. , 1882371920-30937311949*x^47+6616907060*x^46-742.. )...20ms
       gcd ( -96986421453*x^426-75230349764*x^425+1282023978.. , 13695560229*x^426+16181971852*x^425-90237548124.. )...2048ms
       gcd ( 138233755629*x^426-22168686741*x^425-6531403218.. , -12298243395*x^426-33246261919*x^425+1488121621.. )...8369ms
GCDFT1: gcd = 1 (n=14)...412ms
GCDFT2: gcd of linearly dense quartic inputs with quadratic GCDs (n=7)...208ms
GCDFT3: gcd of sparse inputs where degree // to #vars (n=4)...120ms
GCDFT4: gcd of sparse inputs where degree // to #vars (second) (n=4)...68ms
GCDFT5: gcd quadratic non-monic with other quadratic factors (n=6)...24ms
GCDFT7: gcd completly dense non-monic quadratic inputs (n=8)...2240ms
GCDFT8: gcd sparse non-monic quadratic inputs with linear gcds (n=10)...136ms
GCDFT9: trivariate inputs with increasing degrees (n=17)...4ms
GCDFT10: trivariate polynomials whose GCD has common factors with cofactors (j=7,k=11)...196ms
diff ( x/(1+sin(x^(y+x^2)))^2 , x)...0.00128ms
R1: f(f(...) with f(z)=sqrt(1/3)*z^2 + i/3 and n=17...1772ms
R2: hermite(25,y)...1320ms
R6: sum(((x+sin(i))/x+(x-sin(i))/x) for n=100000...2388ms
R7: 100000 random float eval of x^24+34*x^12+45*x^3+9*x^18 +34*x^10+ 32*x^21...1268ms
R8:right(x^2,0,5,100000) ...228ms
S2:expand((x^sin(x) + y^cos(y) - z^(x+y))^500) ...1640ms
S3:diff(expand((x^y + y^z + z^x)^500,x) ...3765ms
S4:series(sin(x)*cos(x),x=0,500) ...592ms
series(tan(2+x),x=0,100) ...5624ms
Rationalize nested expression 1 ...1628ms
Rationalize sum((i*y*t^i)/(y+i*t)^i),i=1..10 ...2288ms
Rationalize sum((i*y*t^i)/(y+abs(5-i)*t)^i),i=1..10 ...216ms
End -- Base:0x815c000 Top:0x815c188 Used:392 MaxUsed:256562668 Max:2113929216
Total time 80588ms


gcc version 4.3.3
MAY V0.7.3 (GMP V4.3.0 MPFR V2.3.2 CC=gcc CFLAGS=-fexceptions -O3 -fomit-frame-pointer -funroll-loops -ffast-math -march=native -ffunction-sections -fdata-sections)
Start -- Base:0x8181000 Top:0x8181160 Used:352 MaxUsed:352 Max:2113929216
Construct (3*(a*x+b*y+c*z) with a=1/2, b=2/3 and c=4/5...0.00309ms [323275 execs/sec]
eval (sum ai*ai*ai) - quite different - N=100......0.03ms
eval (sum ai*ai*ai) -  quite similar  - N=100......0.03ms
eval (sum ai*ai*ai) - quite different - N=1000......0.32ms
eval (sum ai*ai*ai) -  quite similar  - N=1000......0.32ms
eval (sum ai*ai*ai) - quite different - N=10000......1.50ms
eval (sum ai*ai*ai) -  quite similar  - N=10000......1.33ms
eval (sum ai*ai*ai) - quite different - N=100000......56.00ms
eval (sum ai*ai*ai) -  quite similar  - N=100000......52.00ms
eval (sum ai*ai*ai) - quite different - N=1000000......680.00ms
eval (sum ai*ai*ai) -  quite similar  - N=1000000......800.00ms
eval(sum(i*x^i, n=0..20000)...8ms
eval(x+f(x)+f(f(x))+...+f(5000)(x)), subs f to id...1576ms
eval(sum(i,i=0..20000)+x+sum(i,i=0..20000))...0ms
eval(sum(sin(n*PI/6), n=0..20000)...36ms
eval((2+3*I/4)^1000000)...536ms
evalf(sin(1+PI)^2+3^sqrt(1+PI^2)) to 100000 bits...376ms
expand ((a0+...a500)^2), replace a0, reeval...776ms
expand ((x0+...x2+1)^16*(1+(x0+...x2+1)^16))...84ms
expand ((x0+...x3+1)^20*(1+(x0+...x3+1)^20))...7441ms
expand ((x+y^400000000000+z)^20*(1+x+y+z^-1)^20)...940ms
expand ((1+x)^1000*(2+x)^1000)...604ms
expand ((17+x)^600*(42+x)^600)...576ms
expand ((1+sqrt(5))^65000)...8ms
expand ((1+x+y)^500)...1580ms
expand (expand((1+x)^50*(1+y)^50) * expand((1-x)^50*(2-y)^50))...260ms
expand (expand((a+b+c+d+e+f+g+h)^5) * expand((a+b+c+d+e+f+g+h)^5))...644ms
expand ((1+x+...+x^65535)*(1+2*x+x^2+...+x^65535))...14545ms
divide ( (1+x)^1000+1 , (1-x)^500, x)...436ms
divide ( (1+x)^1000+1 , x^3-5*x+17, x)...4ms
divide ( (1+x+y^2)^50+1 , (1-x)^25+y, x)...24ms
divide ( (1+x+y^2)^25+1 , x^3*y-5*x*y^42+17*y+1, x)...0ms
divide ( (1+x+y^2)^50+1 , (1-x)^25+y, {x,y})...1056ms
divide ( (1+x+y^2)^25+1 , x^3*y-5*x*y^42+17*y+1, {x,y})...1448ms
       gcd ( (1+2*x)^200*(x^3+2*x^2+1) , (1+2*x)^42*(x^3-2*x+42) )...4ms
expand+gcd ( (1+2*x)^200*(x^3+2*x^2+1) , (1+2*x)^42*(x^3-2*x+42) )...20ms
       gcd ( (1+2*x)^200*(x^3+2*x^2+1) , (1+2*x)^42*(x^3-2*x+42)+1 )...20ms
expand+gcd ( (1+2*x)^200*(x^3+2*x^2+1) , (1+2*x)^42*(x^3-2*x+42)+1 )...16ms
       gcd ( (1+2*x+y)^100*(x^3+2*x^2*y+1) , (1+2*x+y)^42*(x^3-2*x+42) )...8ms
expand+gcd ( (1+2*x+y)^100*(x^3+2*x^2*y+1) , (1+2*x+y)^42*(x^3-2*x+42) )...5721ms
       gcd ( (x^2-3*x*y+y^2)^4*(3*x-7*y+2)^5 , (x^2-3*x*y+y^2)^3*(3*x-7*y-2)^6 )...0ms
expand+gcd ( (x^2-3*x*y+y^2)^4*(3*x-7*y+2)^5 , (x^2-3*x*y+y^2)^3*(3*x-7*y-2)^6 )...4ms
       gcd ( (7*y*x^2*z^2-3*x*y*z+11*(x+1)*y^2+5*z+1)^4*(3*x.. , (7*y*x^2*z^2-3*x*y*z+11*(x+1)*y^2+5*z+1)^3*(3*x.. )...0ms
expand+gcd ( (7*y*x^2*z^2-3*x*y*z+11*(x+1)*y^2+5*z+1)^4*(3*x.. , (7*y*x^2*z^2-3*x*y*z+11*(x+1)*y^2+5*z+1)^3*(3*x.. )...116ms
       gcd ( (x^2-y^2)*(a+b)^10 , (x-y)*(a-c)^10 )...0ms
expand+gcd ( (x^2-y^2)*(a+b)^10 , (x-y)*(a-c)^10 )...4ms
       gcd ( (x-y)^50+a , (x+y)^50 )...0ms
expand+gcd ( (x-y)^50+a , (x+y)^50 )...0ms
       gcd ( -2107-7967*x+19271*x^50+551*x^49-39300*x^48+236.. , -2401-3773*x-9484*x^50-4086*x^49-31296*x^48-216.. )...4ms
       gcd ( -1368+2517*x-62928*x^500+126728*x^499-139637*x^.. , -6336-11784*x+4932*x^500+50975*x^499+97099*x^49.. )...204ms
       gcd ( 3772-5709*x-28359*x^500+38352*x^499-18303*x^498.. , -3680-4456*x+90816*x^500+35952*x^499+89870*x^49.. )...796ms
Compute GCD in Z/181Z
       gcd ( (1+2*x)^400*(x^3+2*x^2+1) , (1+2*x)^42*(x^3-2*x+42) )...8ms
expand+gcd ( (1+2*x)^400*(x^3+2*x^2+1) , (1+2*x)^42*(x^3-2*x+42) )...12ms
       gcd ( (1+2*x)^400*(x^3+2*x^2+1) , (1+2*x)^42*(x^3-2*x+42)+1 )...16ms
expand+gcd ( (1+2*x)^400*(x^3+2*x^2+1) , (1+2*x)^42*(x^3-2*x+42)+1 )...12ms
       gcd ( (1+2*x+y)^100*(x^3+2*x^2*y+1) , (1+2*x+y)^42*(x^3-2*x+42) )...12ms
expand+gcd ( (1+2*x+y)^100*(x^3+2*x^2*y+1) , (1+2*x+y)^42*(x^3-2*x+42) )...2588ms
       gcd ( (x^2-3*x*y+y^2)^4*(3*x-7*y+2)^5 , (x^2-3*x*y+y^2)^3*(3*x-7*y-2)^6 )...4ms
expand+gcd ( (x^2-3*x*y+y^2)^4*(3*x-7*y+2)^5 , (x^2-3*x*y+y^2)^3*(3*x-7*y-2)^6 )...32ms
Compute GCD in Z/43051Z
       gcd ( -936639990+26248623452*x^47-30174373832*x^46-19.. , 1882371920-30937311949*x^47+6616907060*x^46-742.. )...20ms
       gcd ( -96986421453*x^426-75230349764*x^425+1282023978.. , 13695560229*x^426+16181971852*x^425-90237548124.. )...1932ms
       gcd ( 138233755629*x^426-22168686741*x^425-6531403218.. , -12298243395*x^426-33246261919*x^425+1488121621.. )...7837ms
GCDFT1: gcd = 1 (n=14)...412ms
GCDFT2: gcd of linearly dense quartic inputs with quadratic GCDs (n=7)...208ms
GCDFT3: gcd of sparse inputs where degree // to #vars (n=4)...120ms
GCDFT4: gcd of sparse inputs where degree // to #vars (second) (n=4)...68ms
GCDFT5: gcd quadratic non-monic with other quadratic factors (n=6)...24ms
GCDFT7: gcd completly dense non-monic quadratic inputs (n=8)...2116ms
GCDFT8: gcd sparse non-monic quadratic inputs with linear gcds (n=10)...136ms
GCDFT9: trivariate inputs with increasing degrees (n=17)...0ms
GCDFT10: trivariate polynomials whose GCD has common factors with cofactors (j=7,k=11)...192ms
diff ( x/(1+sin(x^(y+x^2)))^2 , x)...0.00122ms
R1: f(f(...) with f(z)=sqrt(1/3)*z^2 + i/3 and n=17...1772ms
R2: hermite(25,y)...1212ms
R6: sum(((x+sin(i))/x+(x-sin(i))/x) for n=100000...2324ms
R7: 100000 random float eval of x^24+34*x^12+45*x^3+9*x^18 +34*x^10+ 32*x^21...1272ms
R8:right(x^2,0,5,100000) ...228ms
S2:expand((x^sin(x) + y^cos(y) - z^(x+y))^500) ...1624ms
S3:diff(expand((x^y + y^z + z^x)^500,x) ...3629ms
S4:series(sin(x)*cos(x),x=0,500) ...604ms
series(tan(2+x),x=0,100) ...5628ms
Rationalize nested expression 1 ...1540ms
Rationalize sum((i*y*t^i)/(y+i*t)^i),i=1..10 ...2296ms
Rationalize sum((i*y*t^i)/(y+abs(5-i)*t)^i),i=1..10 ...216ms
End -- Base:0x8181000 Top:0x8181188 Used:392 MaxUsed:256562668 Max:2113929216
Total time 79487ms


ICC 10.1:
MAY V0.7.3 (GMP V4.3.0 MPFR V2.3.2 CC=icc CFLAGS=-fast -fomit-frame-pointer -march=pentium3 -fexceptions -wd810 -wd981 -wd1229)
Start -- Base:0x81f8000 Top:0x81f8160 Used:352 MaxUsed:352 Max:2113929216
Construct (3*(a*x+b*y+c*z) with a=1/2, b=2/3 and c=4/5...0.00251ms [398936 execs/sec]
eval (sum ai*ai*ai) - quite different - N=100......0.02ms
eval (sum ai*ai*ai) -  quite similar  - N=100......0.02ms
eval (sum ai*ai*ai) - quite different - N=1000......0.29ms
eval (sum ai*ai*ai) -  quite similar  - N=1000......0.27ms
eval (sum ai*ai*ai) - quite different - N=10000......1.71ms
eval (sum ai*ai*ai) -  quite similar  - N=10000......1.50ms
eval (sum ai*ai*ai) - quite different - N=100000......52.00ms
eval (sum ai*ai*ai) -  quite similar  - N=100000......48.00ms
eval (sum ai*ai*ai) - quite different - N=1000000......632.00ms
eval (sum ai*ai*ai) -  quite similar  - N=1000000......740.00ms
eval(sum(i*x^i, n=0..20000)...8ms
eval(x+f(x)+f(f(x))+...+f(5000)(x)), subs f to id...1424ms
eval(sum(i,i=0..20000)+x+sum(i,i=0..20000))...0ms
eval(sum(sin(n*PI/6), n=0..20000)...32ms
eval((2+3*I/4)^1000000)...536ms
evalf(sin(1+PI)^2+3^sqrt(1+PI^2)) to 100000 bits...380ms
expand ((a0+...a500)^2), replace a0, reeval...696ms
expand ((x0+...x2+1)^16*(1+(x0+...x2+1)^16))...76ms
expand ((x0+...x3+1)^20*(1+(x0+...x3+1)^20))...6977ms
expand ((x+y^400000000000+z)^20*(1+x+y+z^-1)^20)...888ms
expand ((1+x)^1000*(2+x)^1000)...600ms
expand ((17+x)^600*(42+x)^600)...572ms
expand ((1+sqrt(5))^65000)...8ms
expand ((1+x+y)^500)...1572ms
expand (expand((1+x)^50*(1+y)^50) * expand((1-x)^50*(2-y)^50))...244ms
expand (expand((a+b+c+d+e+f+g+h)^5) * expand((a+b+c+d+e+f+g+h)^5))...596ms
expand ((1+x+...+x^65535)*(1+2*x+x^2+...+x^65535))...14509ms
divide ( (1+x)^1000+1 , (1-x)^500, x)...432ms
divide ( (1+x)^1000+1 , x^3-5*x+17, x)...4ms
divide ( (1+x+y^2)^50+1 , (1-x)^25+y, x)...24ms
divide ( (1+x+y^2)^25+1 , x^3*y-5*x*y^42+17*y+1, x)...0ms
divide ( (1+x+y^2)^50+1 , (1-x)^25+y, {x,y})...900ms
divide ( (1+x+y^2)^25+1 , x^3*y-5*x*y^42+17*y+1, {x,y})...1252ms
       gcd ( (1+2*x)^200*(x^3+2*x^2+1) , (1+2*x)^42*(x^3-2*x+42) )...8ms
expand+gcd ( (1+2*x)^200*(x^3+2*x^2+1) , (1+2*x)^42*(x^3-2*x+42) )...24ms
       gcd ( (1+2*x)^200*(x^3+2*x^2+1) , (1+2*x)^42*(x^3-2*x+42)+1 )...20ms
expand+gcd ( (1+2*x)^200*(x^3+2*x^2+1) , (1+2*x)^42*(x^3-2*x+42)+1 )...20ms
       gcd ( (1+2*x+y)^100*(x^3+2*x^2*y+1) , (1+2*x+y)^42*(x^3-2*x+42) )...4ms
expand+gcd ( (1+2*x+y)^100*(x^3+2*x^2*y+1) , (1+2*x+y)^42*(x^3-2*x+42) )...5633ms
       gcd ( (x^2-3*x*y+y^2)^4*(3*x-7*y+2)^5 , (x^2-3*x*y+y^2)^3*(3*x-7*y-2)^6 )...0ms
expand+gcd ( (x^2-3*x*y+y^2)^4*(3*x-7*y+2)^5 , (x^2-3*x*y+y^2)^3*(3*x-7*y-2)^6 )...0ms
       gcd ( (7*y*x^2*z^2-3*x*y*z+11*(x+1)*y^2+5*z+1)^4*(3*x.. , (7*y*x^2*z^2-3*x*y*z+11*(x+1)*y^2+5*z+1)^3*(3*x.. )...4ms
expand+gcd ( (7*y*x^2*z^2-3*x*y*z+11*(x+1)*y^2+5*z+1)^4*(3*x.. , (7*y*x^2*z^2-3*x*y*z+11*(x+1)*y^2+5*z+1)^3*(3*x.. )...112ms
       gcd ( (x^2-y^2)*(a+b)^10 , (x-y)*(a-c)^10 )...0ms
expand+gcd ( (x^2-y^2)*(a+b)^10 , (x-y)*(a-c)^10 )...0ms
       gcd ( (x-y)^50+a , (x+y)^50 )...0ms
expand+gcd ( (x-y)^50+a , (x+y)^50 )...0ms
       gcd ( -2107-7967*x+19271*x^50+551*x^49-39300*x^48+236.. , -2401-3773*x-9484*x^50-4086*x^49-31296*x^48-216.. )...4ms
       gcd ( -1368+2517*x-62928*x^500+126728*x^499-139637*x^.. , -6336-11784*x+4932*x^500+50975*x^499+97099*x^49.. )...196ms
       gcd ( 3772-5709*x-28359*x^500+38352*x^499-18303*x^498.. , -3680-4456*x+90816*x^500+35952*x^499+89870*x^49.. )...768ms
Compute GCD in Z/181Z
       gcd ( (1+2*x)^400*(x^3+2*x^2+1) , (1+2*x)^42*(x^3-2*x+42) )...4ms
expand+gcd ( (1+2*x)^400*(x^3+2*x^2+1) , (1+2*x)^42*(x^3-2*x+42) )...12ms
       gcd ( (1+2*x)^400*(x^3+2*x^2+1) , (1+2*x)^42*(x^3-2*x+42)+1 )...16ms
expand+gcd ( (1+2*x)^400*(x^3+2*x^2+1) , (1+2*x)^42*(x^3-2*x+42)+1 )...12ms
       gcd ( (1+2*x+y)^100*(x^3+2*x^2*y+1) , (1+2*x+y)^42*(x^3-2*x+42) )...8ms
expand+gcd ( (1+2*x+y)^100*(x^3+2*x^2*y+1) , (1+2*x+y)^42*(x^3-2*x+42) )...2288ms
       gcd ( (x^2-3*x*y+y^2)^4*(3*x-7*y+2)^5 , (x^2-3*x*y+y^2)^3*(3*x-7*y-2)^6 )...0ms
expand+gcd ( (x^2-3*x*y+y^2)^4*(3*x-7*y+2)^5 , (x^2-3*x*y+y^2)^3*(3*x-7*y-2)^6 )...32ms
Compute GCD in Z/43051Z
       gcd ( -936639990+26248623452*x^47-30174373832*x^46-19.. , 1882371920-30937311949*x^47+6616907060*x^46-742.. )...20ms
       gcd ( -96986421453*x^426-75230349764*x^425+1282023978.. , 13695560229*x^426+16181971852*x^425-90237548124.. )...1960ms
       gcd ( 138233755629*x^426-22168686741*x^425-6531403218.. , -12298243395*x^426-33246261919*x^425+1488121621.. )...8029ms
GCDFT1: gcd = 1 (n=14)...408ms
GCDFT2: gcd of linearly dense quartic inputs with quadratic GCDs (n=7)...200ms
GCDFT3: gcd of sparse inputs where degree // to #vars (n=4)...120ms
GCDFT4: gcd of sparse inputs where degree // to #vars (second) (n=4)...68ms
GCDFT5: gcd quadratic non-monic with other quadratic factors (n=6)...20ms
GCDFT7: gcd completly dense non-monic quadratic inputs (n=8)...2004ms
GCDFT8: gcd sparse non-monic quadratic inputs with linear gcds (n=10)...140ms
GCDFT9: trivariate inputs with increasing degrees (n=17)...0ms
GCDFT10: trivariate polynomials whose GCD has common factors with cofactors (j=7,k=11)...184ms
diff ( x/(1+sin(x^(y+x^2)))^2 , x)...0.00107ms
R1: f(f(...) with f(z)=sqrt(1/3)*z^2 + i/3 and n=17...1776ms
R2: hermite(25,y)...1140ms
R6: sum(((x+sin(i))/x+(x-sin(i))/x) for n=100000...2060ms
R7: 100000 random float eval of x^24+34*x^12+45*x^3+9*x^18 +34*x^10+ 32*x^21...1280ms
R8:right(x^2,0,5,100000) ...216ms
S2:expand((x^sin(x) + y^cos(y) - z^(x+y))^500) ...1612ms
S3:diff(expand((x^y + y^z + z^x)^500,x) ...3452ms
S4:series(sin(x)*cos(x),x=0,500) ...605ms
series(tan(2+x),x=0,100) ...5612ms
Rationalize nested expression 1 ...1396ms
Rationalize sum((i*y*t^i)/(y+i*t)^i),i=1..10 ...2280ms
Rationalize sum((i*y*t^i)/(y+abs(5-i)*t)^i),i=1..10 ...216ms
End -- Base:0x81f8000 Top:0x81f8188 Used:392 MaxUsed:256562668 Max:2113929216
Total time 77103ms



Conclusion: LLVM 2.5 est effectivement meilleur que LLVM 2.3.