25380

vince (./25344) :
pour lancer l'update, veuillez télécharger les sources de l'updater puis le compiler


pour compiler l'updater, merci de télécharger les sources et de compiler.

25381

25382

salt '*' state.highstate
avatar
<<< Kernel Extremis©®™ >>> et Inventeur de la différence administratif/judiciaire ! (©Yoshi Noir)

<Vertyos> un poil plus mais elle suce bien quand même la mienne ^^
<Sabrina`> tinkiete flan c juste qu'ils sont jaloux que je te trouve aussi appétissant

25383

jim carrey charlton heston
avatar
HURRRR !

25384

25385

(mais ça viande est... gaaaaaaaw)
avatar
HURRRR !

25386

25387

_states
avatar
<<< Kernel Extremis©®™ >>> et Inventeur de la différence administratif/judiciaire ! (©Yoshi Noir)

<Vertyos> un poil plus mais elle suce bien quand même la mienne ^^
<Sabrina`> tinkiete flan c juste qu'ils sont jaloux que je te trouve aussi appétissant

25388

25389

25390

<?php define("Y_AXIS_STEP_COUNT", 10); define("Y_AXIS_TEXT_STEP", 5); define("X_AXIS_STEP_COUNT", 7); define("X_AXIS_TEXT_STEP", 5); define("RENDERER_WIDTH", 920); define("RENDERER_HEIGHT", 320); define("INNER_PADDING_TOP", 30); define("INNER_PADDING_LEFT", 20); $realPoints = array(array(0,5), array(1,10), array(2,15), array(3,20), array(4,10), array(5,0), array(6,9)); ?> <!DOCTYPE html> <html> <head> <title>LeGraph 2.0</title> <style type="text/css"> svg { color: #333333; border: 1px solid black; } g.axis > g { opacity: 1; } g.axis { fill: #aaa; font-size: 10px; } body { border-radius: 6px; background: #f3f3f3; position: relative; margin-top: 20px; } line.tick { stroke: #e1e1e1; stroke-width: 1; shape-rendering: crispedges; } .axis text { font-family: "Helvetica Neue", Helvetica, Arial, sans-serif; font-size: 11px; fill: #999; } path.path { fill: none; stroke: #1db34f; stroke-width: 2px; } </style> </head> <body> <svg width="<?php echo RENDERER_WIDTH; ?>" height="<?php echo RENDERER_HEIGHT; ?>"> <g transform="translate(<?php echo INNER_PADDING_LEFT; ?>,<?php echo INNER_PADDING_TOP; ?>)"> <g class="y axis"> <?php for ($i = 0; $i < Y_AXIS_STEP_COUNT; ++$i) { echo '<g transform="translate(-2,'.(((RENDERER_HEIGHT - INNER_PADDING_TOP) / Y_AXIS_STEP_COUNT) * $i).')">'; echo '<line class="tick" x2=' . (RENDERER_WIDTH - INNER_PADDING_LEFT * 2 + 2) . ' y2="0"></line>'; echo '<text x="-3" y="0" dy="0.32em" style="text-anchor: end">' . (Y_AXIS_TEXT_STEP * (Y_AXIS_STEP_COUNT - $i - 1)) . '</text>'; echo '</g>'; } ?> </g> <g class="x axis"> <?php for ($i = 0; $i < X_AXIS_STEP_COUNT; ++$i) { echo '<g transform="translate('.((RENDERER_WIDTH - INNER_PADDING_LEFT * 2) / (X_AXIS_STEP_COUNT - 1) * $i).','.(RENDERER_HEIGHT - INNER_PADDING_TOP*2+3).')">'; echo '<line class="tick" y2='.(INNER_PADDING_TOP * 2 - RENDERER_HEIGHT - 3).' x2="0"></line>'; echo '<text style="text-anchor: middle" dy="1em">' . (X_AXIS_TEXT_STEP * $i) . '</text>'; echo '</g>'; } ?> </g> <path class="path" d="<?php $yInterval = (RENDERER_HEIGHT - INNER_PADDING_TOP) / Y_AXIS_STEP_COUNT; $xInterval = (RENDERER_WIDTH - INNER_PADDING_LEFT) / X_AXIS_STEP_COUNT; for ($i = 0; $i < X_AXIS_STEP_COUNT; ++$i) { $point = &$realPoints[$i]; $previousPoint = array(0, 0); if ($i > 0) $previousPoint = $realPoints[$i - 1]; $command = ($i == 0 ? "M" : "L"); $graphicalX = 0; $graphicalY = 0; // The previous point is considered our origin $graphicalX -= echo $command . " " . $graphicalX . " " . $graphicalY . " "; } ?>"><!-- Just the path line --> </path> </g> </svg> </body>

25391

float invDt = 1.0f / particleDt;
avatar
HURRRR !

25392

WSGIScriptAlias / /var/www/v13/code/wsgi.py
avatar
<<< Kernel Extremis©®™ >>> et Inventeur de la différence administratif/judiciaire ! (©Yoshi Noir)

<Vertyos> un poil plus mais elle suce bien quand même la mienne ^^
<Sabrina`> tinkiete flan c juste qu'ils sont jaloux que je te trouve aussi appétissant

25393

<?php class SvgRenderer { private $series = array(); private $xLabels = array(); private $yLabels = array(); private $svgWidth = 0; private $svgHeight = 0; private $topOffset = 0; private $leftOffset = 0; /* * @description Creates a new SvgRenderer instance */ public function __construct($width, $height, $tof = 0, $lof = 0) { $this->svgWidth = $width; $this->svgHeight = $height; $this->topOffset = $tof; $this->leftOffset = $lof; } public function SetSidePadding($padding) { $this->leftOffset = $padding; } public function SetTopPadding($padding) { $this->topOffset = $padding; } public function SetXAxisLabel($labels) { $this->xLabels = $labels; } public function SetYAxisLabel($labels) { $this->yLabels = $labels; } /* * @description Adds a serie of points to draw. * @return Index of the serie added */ public function AddSerie($fillColor, $strokeColor, $points) { if ($this->svgWidth == 0 || $this->svgHeight == 0) throw new Exception("Tried to add a serie on a SVG that has missing size informations!"); $this->series[] = array('fillColor' => $fillColor, 'strokeColor' => $strokeColor, 'points' => $points); return count($this->series) - 1; } /* * @description Modifies the filling color for a serie. This color is the color of dots. * @note If the serie index is not provided, every serie will get the provided fill color. * @return Nothing */ public function SetSerieFillColor($fillColor, $serieIndex = -1) { for ($i = 0, $l = count($this->series); $i < $l && $serie = &$this->series[$i]; ++$i) if ($serieIndex == -1 || $i == $serieIndex) $serie['fillColor'] = $fillColor; } /* * @description Modifies the strokeing color for a serie. This color is the color of dots. * @note If the serie index is not provided, every serie will get the provided stroke color. * @return Nothings */ public function SetSerieStrokeColor($strokeColor, $serieIndex = -1) { for ($i = 0, $l = count($this->series); $i < $l && $serie = &$this->series[$i]; ++$i) if ($serieIndex == -1 || $i == $serieIndex) $serie['strokeColor'] = $strokeColor; } public function Render() { $innerWidth = $this->svgWidth - $this->leftOffset * 2; $innerHeight = $this->svgHeight - $this->topOffset * 2; $yCount = count($this->yLabels); $xCount = count($this->xLabels); $htmlNode = '<svg width="'.$this->svgWidth.'" height="'.$this->svgHeight.'">'; $htmlNode .= '<g transform="translate('.$this->leftOffset.','.$this->topOffset.')">'; $htmlNode .= '<g class="y axis" style="fill: #aaa;font-size: 10px;">'; for ($i = 0; $i < $yCount; ++$i) { $htmlNode .= '<g transform="translate(-6,'.((($this->svgHeight - $this->topOffset) / $yCount) * $i).')">'; $htmlNode .= '<line class="tick" x2=' . ($this->svgWidth - $this->leftOffset * 2 + 6) . ' y2="0" style="stroke: #e1e1e1; stroke-width: 1; shape-rendering: crispedges;"></line>'; $htmlNode .= '<text x="-6" y="0" dy="0.32em" style="text-anchor: end">' . $this->yLabels[$i] . '</text>'; $htmlNode .= '</g>'; } $htmlNode .= '</g><g class="y axis" style="fill: #aaa;font-size: 10px;">'; for ($i = 0; $i < $xCount; ++$i) { $htmlNode .= '<g transform="translate('.(($this->svgWidth - $this->leftOffset * 2) / ($xCount - 1) * $i).','.($this->svgHeight - $this->topOffset * 1.5).')">'; $htmlNode .= '<line class="tick" y2='.($this->topOffset * 1.5 - $this->svgHeight).' x2="0" style="stroke: #e1e1e1; stroke-width: 1; shape-rendering: crispedges;"></line>'; $htmlNode .= '<text style="text-anchor: middle" dy="1em">' . $this->xLabels[$i] . '</text>'; $htmlNode .= '</g>'; } $htmlNode .= '</g>'; $yInterval = ($this->svgHeight - $this->topOffset) / $yCount; $xInterval = ($this->svgWidth - $this->leftOffset * 2) / ($xCount - 1); $dotArray = array(); foreach ($this->series as $serie) { $pointsArray = array(); for ($i = 0; $i < $xCount; ++$i) { $point = &$serie['points'][$i]; $command = ($i == 0 ? "M" : "L"); $graphicalX = $point[0] * $xInterval; $graphicalY = $yInterval * ($yCount - $point[1] - 1); $pointsArray[] = $command . " " . $graphicalX . " " . $graphicalY; $dotArray[] = array($graphicalX, $graphicalY, $serie['strokeColor'], $serie['fillColor']); } $htmlNode .= '<path class="path" style="stroke: '.$serie['strokeColor'].';fill: none;stroke-width: 2px;" d="' . implode(" ", $pointsArray) . '"></path>'; } // And now, the dots foreach ($dotArray as &$dot) { $htmlNode .= '<g class="dot" transform="translate('.$dot[0].','.$dot[1].')" style="stroke: '.$dot[2].'; fill: '.$dot[3].';stroke-width: 2px;">'; $htmlNode .= '<circle r="4"></circle>'; $htmlNode .= '</g>'; } $htmlNode .= '</g></svg>'; return $htmlNode; } } $a = new SvgRenderer(960, 360, 50, 40); $a->SetXAxisLabel(array("Monday", "Tuesday", "Wednesday", "Thrusday", "Friday", "Saturday", "Sunday")); $a->SetYAxisLabel(array(5,10,15,20,25,30,35,40,45,50)); $a->AddSerie('#1db34f', '#16873c', array(array(0,5), array(1,7), array(2,2), array(3,4), array(4,9), array(5,0), array(6,9))); echo $a->Render();

25394

C398739-001A
avatar
Proud to be CAKE©®™


GCC4TI importe qui a problème en Autriche, pour l'UE plus et une encore de correspours nucléaire, ce n'est pas ytre d'instérier. L'état très même contraire, toujours reconstruire un pouvoir une choyer d'aucrée de compris le plus mite de genre, ce n'est pas moins)
Stalin est l'élection de la langie.

25395

FirstSpawnDelay
avatar
HURRRR !

25396

i am the president so shut the fuck up Calhoun
avatar

25397

#if 0
// NOTE: GCC is unable to produce satisfying assembly, it generates a shitload of crappy scheduled instructions,
// and the inner loop costs 50 cycles instead of 30 with the manual version below:
boxMin0 = SIMD::Pipeline::Odd::spu_min(boxMin0.m_Data, locMin0.m_Data);
boxMax0 = SIMD::Pipeline::Odd::spu_max(boxMin0.m_Data, locMax0.m_Data);
boxMin1 = SIMD::Pipeline::Odd::spu_min(boxMin0.m_Data, locMin1.m_Data);
boxMax1 = SIMD::Pipeline::Odd::spu_max(boxMin0.m_Data, locMax1.m_Data);
boxMin2 = SIMD::Pipeline::Even::spu_min(boxMin2.m_Data, locMin2.m_Data);
boxMax2 = SIMD::Pipeline::Even::spu_max(boxMax2.m_Data, locMax2.m_Data);
boxMin3 = SIMD::Pipeline::Even::spu_min(boxMin3.m_Data, locMin3.m_Data);
boxMax3 = SIMD::Pipeline::Even::spu_max(boxMax3.m_Data, locMax3.m_Data);
#else
// executes on the odd pipe, except for the 'spu_sel'
boxMin0 = spu_sel(boxMin0.m_Data, locMin0.m_Data, spu_rlqwbyte(spu_maskb(spu_extract(spu_gather(spu_rlqw((vec_uint4)((boxMin0 - locMin0).m_Data), 1)), 0)), 12));
boxMax0 = spu_sel(boxMax0.m_Data, locMax0.m_Data, spu_rlqwbyte(spu_maskb(spu_extract(spu_gather(spu_rlqw((vec_uint4)((locMax0 - boxMax0).m_Data), 1)), 0)), 12));
boxMin1 = spu_sel(boxMin1.m_Data, locMin1.m_Data, spu_rlqwbyte(spu_maskb(spu_extract(spu_gather(spu_rlqw((vec_uint4)((boxMin1 - locMin1).m_Data), 1)), 0)), 12));
boxMax1 = spu_sel(boxMax1.m_Data, locMax1.m_Data, spu_rlqwbyte(spu_maskb(spu_extract(spu_gather(spu_rlqw((vec_uint4)((locMax1 - boxMax1).m_Data), 1)), 0)), 12));
// executes on the even pipe
boxMin2 = SIMD::Min(boxMin2, locMin2);
boxMax2 = SIMD::Max(boxMax2, locMax2);
boxMin3 = SIMD::Min(boxMin3, locMin3);
boxMax3 = SIMD::Max(boxMax3, locMax3);
#endif
avatar
HURRRR !

25398

25399

ParametricPlot[{If[Sin[t/2] < 0, I, 1] ((-2201/7 - (3 Sin[11/12 - 80 t])/8 - (10 Sin[17/13 - 70 t])/13 - (11 Sin[7/6 - 63 t])/10 - (5 Sin[23/15 - 59 t])/2 - (25 Sin[11/7 - 39 t])/3 - (12 Sin[11/9 - 28 t])/5 - (79 Sin[5/8 - 24 t])/20 + (1481 Sin[47/10 + t])/7 + (9162 Sin[14/9 + 2 t])/49 + (1209 Sin[47/10 + 3 t])/14 + (599 Sin[11/7 + 4 t])/13 + (179 Sin[33/7 + 5 t])/8 + (367 Sin[65/14 + 6 t])/13 + (279 Sin[34/23 + 7 t])/8 + (41 Sin[12/7 + 8 t])/4 + (628 Sin[93/20 + 9 t])/7 + (119 Sin[11/7 + 10 t])/8 + (433 Sin[25/17 + 11 t])/8 + (753 Sin[40/27 + 12 t])/8 + (319 Sin[51/11 + 13 t])/12 + (2463 Sin[37/8 + 14 t])/22 + (29 Sin[79/17 + 15 t])/15 + (140 Sin[8/5 + 16 t])/11 + (875 Sin[51/11 + 17 t])/11 + (595 Sin[3/2 + 18 t])/9 + (69 Sin[10/7 + 19 t])/4 + (71 Sin[41/9 + 20 t])/6 + (173 Sin[22/15 + 21 t])/7 + (197 Sin[7/5 + 22 t])/12 + (288 Sin[40/27 + 23 t])/7 + (57 Sin[14/9 + 25 t])/4 + (379 Sin[41/9 + 26 t])/13 + (143 Sin[103/23 + 27 t])/15 + (169 Sin[51/11 + 29 t])/8 + (16 Sin[17/10 + 30 t])/3 + (125 Sin[65/14 + 31 t])/8 + (47 Sin[23/5 + 32 t])/4 + (149 Sin[14/3 + 33 t])/14 + (33 Sin[13/3 + 34 t])/10 + (243 Sin[14/3 + 35 t])/22 + (181 Sin[41/9 + 36 t])/15 + (79 Sin[32/7 + 37 t])/5 + (48 Sin[11/7 + 38 t])/11 + (19 Sin[60/13 + 40 t])/14 + (74 Sin[47/10 + 41 t])/17 + (17 Sin[37/25 + 42 t])/10 + (44 Sin[32/7 + 43 t])/19 + (165 Sin[77/17 + 44 t])/13 + (8 Sin[37/15 + 45 t])/7 + (57 Sin[14/15 + 46 t])/23 + (19 Sin[4/3 + 47 t])/11 + (40 Sin[47/10 + 48 t])/9 + (30 Sin[11/7 + 49 t])/11 + (189 Sin[56/13 + 50 t])/38 + (121 Sin[55/12 + 51 t])/27 + (80 Sin[13/10 + 52 t])/13 + (35 Sin[11/10 + 53 t])/11 + (9 Sin[17/7 + 54 t])/13 + (48 Sin[55/12 + 55 t])/19 + (13 Sin[15/11 + 56 t])/4 + (23 Sin[53/12 + 57 t])/6 + (29 Sin[13/9 + 58 t])/11 + (35 Sin[47/11 + 60 t])/8 + (25 Sin[10/7 + 61 t])/17 + (9 Sin[19/12 + 62 t])/7 + (65 Sin[4/3 + 64 t])/16 + (2 Sin[27/7 + 65 t])/13 + (87 Sin[11/8 + 66 t])/44 + (9 Sin[49/11 + 67 t])/5 + Sin[41/12 + 68 t]/2 + (10 Sin[3/2 + 69 t])/13 + (17 Sin[10/9 + 71 t])/8 + (69 Sin[31/7 + 72 t])/35 + (7 Sin[18/5 + 73 t])/9 + (43 Sin[58/13 + 74 t])/21 + (34 Sin[31/7 + 75 t])/23 + (18 Sin[24/23 + 76 t])/17 + (11 Sin[38/9 + 77 t])/4 + (23 Sin[13/3 + 78 t])/7 + (4 Sin[21/16 + 79 t])/13 + (5 Sin[17/13 + 81 t])/8 + (7 Sin[32/7 + 82 t])/5 + (12 Sin[5/4 + 83 t])/7) UnitStep[95 Pi - t] UnitStep[-91 Pi + t] + (-3313/10 - (74 Sin[11/7 - 20 t])/73 - (18 Sin[14/9 - 18 t])/5 - (225 Sin[11/7 - 9 t])/32 - (5492 Sin[11/7 - t])/11 + (1102 Sin[11/7 + 2 t])/5 + (73 Sin[11/7 + 3 t])/2 + (371 Sin[11/7 + 4 t])/11 + (69 Sin[14/9 + 5 t])/7 + (155 Sin[11/7 + 6 t])/9 + (19 Sin[19/12 + 7 t])/8 + (14 Sin[11/7 + 8 t])/9 + (53 Sin[47/10 + 10 t])/12 + (9 Sin[47/10 + 11 t])/11 + (17 Sin[33/7 + 12 t])/6 + Sin[51/11 + 13 t] + (111 Sin[33/7 + 14 t])/17 + (21 Sin[33/7 + 15 t])/10 + (145 Sin[47/10 + 16 t])/36 + (3 Sin[9/2 + 17 t])/8 + (2 Sin[89/19 + 19 t])/7 + (15 Sin[13/8 + 21 t])/16 + (35 Sin[33/7 + 22 t])/13 + (7 Sin[79/17 + 23 t])/9) UnitStep[91 Pi - t] UnitStep[-87 Pi + t] + (133/4 - (5 Sin[11/7 - 25 t])/9 - Sin[1/34 - 21 t]/12 - (18 Sin[14/9 - 19 t])/13 - (3 Sin[13/9 - 17 t])/2 - (8 Sin[20/13 - 13 t])/13 - (71 Sin[14/9 - 10 t])/13 - (37 Sin[14/9 - 8 t])/12 - (8 Sin[14/9 - 6 t])/11 - (23 Sin[14/9 - 5 t])/13 - (7 Sin[31/21 - 3 t])/4 - (31 Sin[14/9 - 2 t])/12 + (506 Sin[33/7 + t])/5 + (11 Sin[37/8 + 4 t])/8 + Sin[79/40 + 7 t]/9 + (5 Sin[59/29 + 9 t])/16 + (43 Sin[11/7 + 11 t])/14 + (29 Sin[47/10 + 12 t])/8 + (5 Sin[11/8 + 14 t])/14 + (33 Sin[47/10 + 15 t])/4 + (4 Sin[23/13 + 16 t])/9 + (13 Sin[5/3 + 18 t])/9 + (30 Sin[19/12 + 20 t])/17 + (11 Sin[21/13 + 22 t])/9 + (13 Sin[47/10 + 23 t])/10 + (9 Sin[20/13 + 24 t])/8 + Sin[17/11 + 26 t]/6 + Sin[41/9 + 27 t]/15 + (6 Sin[14/3 + 28 t])/13 + (3 Sin[3/2 + 29 t])/7 + (3 Sin[14/9 + 30 t])/11 + (2 Sin[5/3 + 31 t])/9 + (4 Sin[16/11 + 32 t])/11 + (10 Sin[89/19 + 33 t])/19 + (7 Sin[14/3 + 34 t])/9 + Sin[65/14 + 35 t]/4 + Sin[3/8 + 36 t]/35 + Sin[20/13 + 37 t]/9 + Sin[47/11 + 38 t]/35 + (2 Sin[37/8 + 39 t])/9) UnitStep[87 Pi - t] UnitStep[-83 Pi + t] + (3090/7 - Sin[17/11 - 15 t]/3 - (12 Sin[11/7 - 14 t])/11 - Sin[14/9 - 12 t]/3 - Sin[14/9 - 10 t]/6 - (85 Sin[11/7 - 4 t])/9 + (68 Sin[11/7 + t])/9 + (5 Sin[19/12 + 2 t])/14 + (3 Sin[26/17 + 3 t])/7 + (127 Sin[11/7 + 5 t])/10 + (40 Sin[11/7 + 6 t])/9 + (7 Sin[11/7 + 7 t])/4 + (13 Sin[11/7 + 8 t])/11 + (14 Sin[11/7 + 9 t])/15 + Sin[10/7 + 11 t]/49 + (3 Sin[11/7 + 13 t])/4 + (2 Sin[11/7 + 16 t])/13 + (4 Sin[19/12 + 17 t])/11 + Sin[14/9 + 18 t]/7 + (4 Sin[11/7 + 19 t])/9 + Sin[19/12 + 20 t]/4 + Sin[14/9 + 21 t]/6) UnitStep[83 Pi - t] UnitStep[-79 Pi + t] + (1121/3 - Sin[17/11 - 24 t]/19 - (2 Sin[14/9 - 18 t])/5 - Sin[19/13 - 15 t]/8 - (7 Sin[20/13 - 14 t])/20 - Sin[13/9 - 13 t]/20 - (10 Sin[14/9 - 8 t])/9 + (353 Sin[11/7 + t])/12 + (27 Sin[8/5 + 2 t])/20 + (8 Sin[11/7 + 3 t])/3 + (3 Sin[14/3 + 4 t])/8 + (23 Sin[11/7 + 5 t])/10 + (9 Sin[33/7 + 6 t])/11 + Sin[17/11 + 7 t]/2 + (9 Sin[19/12 + 9 t])/11 + Sin[68/15 + 10 t]/11 + (4 Sin[8/5 + 11 t])/7 + Sin[41/9 + 12 t]/19 + Sin[19/12 + 17 t]/8 + Sin[11/7 + 19 t]/4 + Sin[89/19 + 20 t]/8 + Sin[8/5 + 21 t]/6 + Sin[7/6 + 23 t]/93 + Sin[5/3 + 25 t]/9) UnitStep[79 Pi - t] UnitStep[-75 Pi + t] + (61/6 - (5 Sin[17/11 - 25 t])/9 - (7 Sin[14/9 - 9 t])/9 + (379 Sin[11/7 + t])/6 + (101 Sin[11/7 + 2 t])/9 + (79 Sin[11/7 + 3 t])/16 + (29 Sin[19/12 + 4 t])/10 + (27 Sin[19/12 + 5 t])/7 + (13 Sin[8/5 + 6 t])/9 + (3 Sin[8/5 + 7 t])/2 + (3 Sin[11/7 + 8 t])/4 + (7 Sin[19/12 + 10 t])/10 + (3 Sin[47/10 + 11 t])/8 + Sin[8/5 + 12 t]/3 + Sin[13/8 + 13 t]/13 + (2 Sin[13/8 + 14 t])/7 + Sin[14/3 + 15 t]/9 + (5 Sin[19/12 + 16 t])/12 + Sin[61/13 + 17 t]/3 + Sin[19/12 + 18 t]/8 + (2 Sin[8/5 + 19 t])/9 + Sin[33/7 + 20 t]/6 + Sin[19/12 + 21 t]/13 + (2 Sin[19/12 + 22 t])/11 + Sin[33/7 + 23 t]/4 + (2 Sin[14/9 + 24 t])/11 + (2 Sin[11/7 + 26 t])/5) UnitStep[75 Pi - t] UnitStep[-71 Pi + t] + (-2254/5 - (17 Sin[11/7 - 11 t])/16 - (145 Sin[14/9 - 9 t])/48 - (87 Sin[11/7 - 5 t])/8 - (235 Sin[11/7 - 3 t])/9 - (43 Sin[11/7 - 2 t])/2 + (187 Sin[11/7 + t])/10 + (54 Sin[19/12 + 4 t])/11 + (9 Sin[11/7 + 6 t])/5 + (321 Sin[11/7 + 7 t])/80 + 2 Sin[11/7 + 8 t] + Sin[51/11 + 10 t]/15 + (6 Sin[11/7 + 12 t])/13) UnitStep[71 Pi - t] UnitStep[-67 Pi + t] + (-15833/26 - Sin[11/8 - 30 t]/3 - (9 Sin[3/2 - 29 t])/5 - (11 Sin[19/13 - 28 t])/6 - (2 Sin[16/11 - 25 t])/5 - (28 Sin[3/2 - 24 t])/13 - (13 Sin[3/2 - 23 t])/9 - (10 Sin[7/5 - 22 t])/11 - (16 Sin[3/2 - 21 t])/7 - Sin[10/9 - 19 t]/3 - (25 Sin[29/19 - 18 t])/7 - (25 Sin[22/15 - 17 t])/6 - (19 Sin[17/11 - 16 t])/4 - (40 Sin[19/13 - 14 t])/39 - (78 Sin[17/11 - 13 t])/11 - (50 Sin[20/13 - 10 t])/7 - (23 Sin[14/9 - 9 t])/8 - (67 Sin[3/2 - 8 t])/10 - (57 Sin[25/17 - 7 t])/13 - (1709 Sin[14/9 - 6 t])/28 - (745 Sin[14/9 - 5 t])/9 + (129 Sin[11/7 + t])/7 + (487 Sin[11/7 + 2 t])/11 + (640 Sin[33/7 + 3 t])/13 + (3565 Sin[11/7 + 4 t])/44 + (2 Sin[9/7 + 11 t])/11 + (68 Sin[11/7 + 12 t])/13 + (9 Sin[3/2 + 15 t])/5 + (11 Sin[13/8 + 20 t])/10 + Sin[17/12 + 26 t]/6 + (6 Sin[21/13 + 27 t])/7 + (4 Sin[19/12 + 31 t])/3) UnitStep[67 Pi - t] UnitStep[-63 Pi + t] + (-1217/10 - (4 Sin[11/7 - 22 t])/11 - (10 Sin[19/13 - 21 t])/19 - (11 Sin[25/17 - 19 t])/15 - (8 Sin[17/12 - 18 t])/13 - (13 Sin[14/9 - 16 t])/11 - (74 Sin[23/15 - 15 t])/21 - (42 Sin[14/9 - 13 t])/11 - (11 Sin[3/2 - 12 t])/8 - (10 Sin[14/9 - 11 t])/11 - (53 Sin[14/9 - 9 t])/5 - (184 Sin[11/7 - 6 t])/7 - (964 Sin[11/7 - 3 t])/15 - 692 Sin[11/7 - t] + (254 Sin[61/13 + 2 t])/11 + (19 Sin[19/13 + 4 t])/6 + (529 Sin[47/10 + 5 t])/44 + (28 Sin[14/9 + 7 t])/9 + (13 Sin[18/11 + 8 t])/8 + (38 Sin[3/2 + 10 t])/39 + (26 Sin[23/14 + 14 t])/11 + (11 Sin[22/13 + 17 t])/16 + (6 Sin[18/11 + 20 t])/7 + (7 Sin[47/10 + 23 t])/10) UnitStep[63 Pi - t] UnitStep[-59 Pi + t] + (2063/10 + (369 Sin[11/7 + t])/5 + Sin[47/10 + 2 t] + (87 Sin[11/7 + 3 t])/10 + Sin[8/5 + 4 t]/6) UnitStep[59 Pi - t] UnitStep[-55 Pi + t] + (11423/42 + (238 Sin[33/7 + t])/9 + (21 Sin[47/10 + 2 t])/5 + Sin[14/13 + 3 t]/7 + (53 Sin[11/7 + 4 t])/11 + (17 Sin[47/10 + 5 t])/6 + (19 Sin[75/16 + 6 t])/18 + Sin[3/2 + 7 t]/2 + (28 Sin[17/11 + 8 t])/19 + (5 Sin[61/13 + 9 t])/7 + (10 Sin[14/3 + 10 t])/21 + (10 Sin[14/9 + 11 t])/21 + (10 Sin[17/11 + 12 t])/11) UnitStep[55 Pi - t] UnitStep[-51 Pi + t] + (895/3 - (15 Sin[4/3 - 7 t])/14 + (265 Sin[23/15 + t])/14 + (75 Sin[60/13 + 2 t])/8 + (296 Sin[37/8 + 3 t])/11 + (297 Sin[113/25 + 4 t])/37 + (128 Sin[37/8 + 5 t])/17 + (25 Sin[21/13 + 6 t])/11 + (8 Sin[9/5 + 8 t])/9 + (23 Sin[59/13 + 9 t])/9 + (11 Sin[46/11 + 10 t])/9 + (32 Sin[22/5 + 11 t])/11 + (8 Sin[21/5 + 12 t])/7) UnitStep[51 Pi - t] UnitStep[-47 Pi + t] + (3860/17 + (509 Sin[11/7 + t])/17 + (4 Sin[19/12 + 2 t])/9) UnitStep[47 Pi - t] UnitStep[-43 Pi + t] + (2777/17 + (1001 Sin[11/7 + t])/40 + (37 Sin[11/7 + 2 t])/4 + (28 Sin[11/7 + 3 t])/13 + (17 Sin[19/12 + 4 t])/13) UnitStep[43 Pi - t] UnitStep[-39 Pi + t] + (5103/16 + (15 Sin[9/11 + t])/4 + (32 Sin[137/46 + 2 t])/13 + (7 Sin[2/5 + 3 t])/8 + (36 Sin[42/11 + 4 t])/7 + (11 Sin[4/7 + 5 t])/12 + (15 Sin[25/6 + 6 t])/11 + (5 Sin[2/9 + 7 t])/8 + (7 Sin[32/9 + 8 t])/9 + (5 Sin[3/8 + 9 t])/12 + (8 Sin[25/8 + 10 t])/13 + (6 Sin[1/26 + 11 t])/11) UnitStep[39 Pi - t] UnitStep[-35 Pi + t] + (145/9 - (3 Sin[13/25 - 9 t])/10 - (65 Sin[1/2 - 7 t])/64 - (8 Sin[1/32 - 5 t])/9 - (17 Sin[5/12 - 3 t])/6 - (65 Sin[11/21 - 2 t])/16 + (91 Sin[35/8 + t])/16 + (17 Sin[13/4 + 4 t])/11 + (7 Sin[31/9 + 6 t])/15 + (3 Sin[29/9 + 8 t])/5 + (4 Sin[21/8 + 10 t])/11 + (4 Sin[1/20 + 11 t])/11 + (2 Sin[23/7 + 12 t])/5) UnitStep[35 Pi - t] UnitStep[-31 Pi + t] + (1579/5 + (205 Sin[5/6 + t])/7) UnitStep[31 Pi - t] UnitStep[-27 Pi + t] + (69/4 + (221 Sin[5/4 + t])/7) UnitStep[27 Pi - t] UnitStep[-23 Pi + t] + (4484/13 - Sin[14/11 - 12 t]/2 - (5 Sin[3/13 - 11 t])/11 - (6 Sin[15/14 - 8 t])/11 - (7 Sin[4/9 - 7 t])/6 - (23 Sin[1/25 - 3 t])/7 - (34 Sin[11/17 - t])/5 + (641 Sin[41/9 + 2 t])/11 + (17 Sin[75/16 + 4 t])/13 + Sin[59/15 + 5 t]/3 + (41 Sin[46/11 + 6 t])/11 + (5 Sin[21/5 + 9 t])/11 + (19 Sin[42/11 + 10 t])/18) UnitStep[23 Pi - t] UnitStep[-19 Pi + t] + (548/15 - (29 Sin[1/2 - 10 t])/12 - (7 Sin[8/7 - 9 t])/11 - (9 Sin[2/11 - 8 t])/11 - (32 Sin[1 - 6 t])/5 - (8 Sin[2/7 - 5 t])/7 - (3 Sin[1/2 - 4 t])/7 - (757 Sin[7/5 - 2 t])/9 - (133 Sin[1/4 - t])/12 + (69 Sin[4/9 + 3 t])/17 + (17 Sin[5/6 + 7 t])/10 + (9 Sin[17/18 + 11 t])/10 + (7 Sin[2/11 + 12 t])/12) UnitStep[19 Pi - t] UnitStep[-15 Pi + t] + (4113/11 + (425 Sin[23/15 + t])/8 + (15 Sin[121/60 + 2 t])/11 + (26 Sin[16/13 + 3 t])/5 + (9 Sin[17/9 + 4 t])/11 + Sin[13/12 + 5 t]) UnitStep[15 Pi - t] UnitStep[-11 Pi + t] + (186/7 + (1303 Sin[19/12 + t])/10 + (2 Sin[19/9 + 2 t])/5 + (78 Sin[14/9 + 3 t])/7 + (11 Sin[17/7 + 4 t])/9 + (24 Sin[22/13 + 5 t])/7 + (4 Sin[25/9 + 6 t])/5) UnitStep[11 Pi - t] UnitStep[-7 Pi + t] + (2609/12 - (11 Sin[5/7 - 8 t])/17 - (6 Sin[1/5 - 6 t])/5 - (63 Sin[2/3 - 4 t])/16 - (108 Sin[11/7 - 2 t])/13 - (293 Sin[13/9 - t])/3 + (169 Sin[32/7 + 3 t])/56 + (2 Sin[26/15 + 5 t])/7 + (4 Sin[19/14 + 7 t])/7 + (9 Sin[66/65 + 9 t])/10 + Sin[117/29 + 10 t]/6 + Sin[13/5 + 11 t]/3 + (4 Sin[11/21 + 12 t])/13) UnitStep[7 Pi - t] UnitStep[-3 Pi + t] + (349/11 - (4 Sin[7/12 - 23 t])/5 - (17 Sin[5/6 - 19 t])/10 - (19 Sin[1/3 - 16 t])/8 - (13 Sin[17/13 - 11 t])/8 - (47 Sin[7/6 - 9 t])/8 - (227 Sin[3/10 - 4 t])/13 - (394 Sin[4/5 - 2 t])/9 + (5455 Sin[63/32 + t])/12 + (195 Sin[9/10 + 3 t])/7 + (123 Sin[4 + 5 t])/8 + (131 Sin[6/13 + 6 t])/13 + (88 Sin[25/6 + 7 t])/13 + (75 Sin[13/9 + 8 t])/13 + (67 Sin[17/8 + 10 t])/10 + (31 Sin[53/12 + 12 t])/13 + (41 Sin[3/5 + 13 t])/14 + (10 Sin[1/15 + 14 t])/7 + (10 Sin[56/15 + 15 t])/13 + (57 Sin[12/23 + 17 t])/29 + (26 Sin[22/21 + 18 t])/25 + (23 Sin[5/14 + 20 t])/8 + (7 Sin[3/10 + 21 t])/3 + (10 Sin[13/8 + 22 t])/7 + (19 Sin[8/7 + 24 t])/10 + (18 Sin[19/14 + 25 t])/17 + (13 Sin[29/11 + 26 t])/8) UnitStep[3 Pi - t] UnitStep[Pi + t]), If[Sin[t/2] < 0, I, 1] ((3132/13 - (3 Sin[13/9 - 75 t])/8 - (11 Sin[9/8 - 68 t])/8 - (8 Sin[4/9 - 64 t])/7 - (4 Sin[13/11 - 62 t])/11 - (15 Sin[12/25 - 52 t])/13 - (46 Sin[9/17 - 50 t])/31 - (10 Sin[8/13 - 40 t])/13 - (23 Sin[25/17 - 36 t])/6 - (80 Sin[40/27 - 27 t])/11 - (55 Sin[7/5 - 25 t])/7 - (379 Sin[20/13 - 16 t])/27 - (201 Sin[17/11 - 6 t])/11 + (1837 Sin[33/7 + t])/6 + (17 Sin[20/13 + 2 t])/18 + (40 Sin[3/2 + 3 t])/3 + (527 Sin[61/13 + 4 t])/16 + (106 Sin[37/8 + 5 t])/11 + (67 Sin[14/9 + 7 t])/5 + (320 Sin[14/3 + 8 t])/9 + (292 Sin[23/5 + 9 t])/9 + (353 Sin[75/16 + 10 t])/14 + (763 Sin[40/27 + 11 t])/12 + (689 Sin[28/19 + 12 t])/10 + (144 Sin[32/7 + 13 t])/13 + (989 Sin[37/8 + 14 t])/12 + (187 Sin[32/7 + 15 t])/7 + (67 Sin[13/7 + 17 t])/15 + (187 Sin[75/16 + 18 t])/10 + (153 Sin[3/2 + 19 t])/4 + (23 Sin[7/8 + 20 t])/12 + (137 Sin[10/7 + 21 t])/6 + (99 Sin[3/2 + 22 t])/4 + (343 Sin[60/13 + 23 t])/10 + (249 Sin[20/13 + 24 t])/14 + (33 Sin[20/13 + 26 t])/2 + (88 Sin[58/13 + 28 t])/13 + (57 Sin[37/8 + 29 t])/4 + (26 Sin[40/9 + 30 t])/11 + (102 Sin[32/7 + 31 t])/7 + (136 Sin[23/5 + 32 t])/13 + (86 Sin[41/9 + 33 t])/11 + (140 Sin[23/5 + 34 t])/13 + (49 Sin[4/3 + 35 t])/6 + (172 Sin[85/19 + 37 t])/13 + (130 Sin[50/11 + 38 t])/11 + (8 Sin[20/11 + 39 t])/9 + (38 Sin[14/11 + 41 t])/9 + (10 Sin[15/13 + 42 t])/3 + (6 Sin[17/9 + 43 t])/7 + (19 Sin[5/7 + 44 t])/15 + (23 Sin[38/25 + 45 t])/7 + (223 Sin[59/13 + 46 t])/16 + (19 Sin[13/6 + 47 t])/9 + (128 Sin[23/5 + 48 t])/15 + (27 Sin[22/13 + 49 t])/8 + (64 Sin[3/2 + 51 t])/13 + (33 Sin[17/11 + 53 t])/10 + (21 Sin[103/23 + 54 t])/11 + (45 Sin[10/7 + 55 t])/13 + (13 Sin[75/16 + 56 t])/7 + (15 Sin[15/8 + 57 t])/16 + (37 Sin[7/6 + 58 t])/16 + (45 Sin[3/2 + 59 t])/23 + (406 Sin[86/19 + 60 t])/81 + (16 Sin[9/4 + 61 t])/11 + (52 Sin[13/9 + 63 t])/11 + (45 Sin[16/11 + 65 t])/8 + (19 Sin[23/5 + 66 t])/10 + (59 Sin[17/11 + 67 t])/13 + (21 Sin[7/5 + 69 t])/5 + (11 Sin[9/2 + 70 t])/9 + (4 Sin[23/7 + 71 t])/5 + (22 Sin[8/7 + 72 t])/7 + (10 Sin[18/19 + 73 t])/7 + (3 Sin[63/16 + 74 t])/4 + (16 Sin[10/7 + 76 t])/15 + (17 Sin[40/9 + 77 t])/6 + (17 Sin[29/7 + 78 t])/14 + (42 Sin[30/7 + 79 t])/17 + (44 Sin[47/11 + 80 t])/19 + (6 Sin[5/6 + 81 t])/13 + (10 Sin[7/10 + 82 t])/7 + (8 Sin[21/5 + 83 t])/11) UnitStep[95 Pi - t] UnitStep[-91 Pi + t] + (2062/7 - (3 Sin[12/11 - 20 t])/14 - (19 Sin[3/2 - 12 t])/11 - (17 Sin[14/9 - 6 t])/3 - (197 Sin[11/7 - 4 t])/6 + (3611 Sin[33/7 + t])/9 + (7469 Sin[33/7 + 2 t])/30 + (189 Sin[11/7 + 3 t])/4 + (357 Sin[11/7 + 5 t])/11 + (49 Sin[11/7 + 7 t])/4 + (73 Sin[11/7 + 8 t])/11 + (131 Sin[11/7 + 9 t])/13 + (42 Sin[20/13 + 10 t])/11 + (56 Sin[11/7 + 11 t])/5 + (97 Sin[11/7 + 13 t])/9 + (29 Sin[23/15 + 14 t])/13 + (22 Sin[14/9 + 15 t])/3 + (18 Sin[11/7 + 16 t])/7 + (24 Sin[11/7 + 17 t])/5 + (18 Sin[14/9 + 18 t])/7 + (20 Sin[14/9 + 19 t])/3 + (18 Sin[14/9 + 21 t])/5 + (12 Sin[11/7 + 22 t])/7 + (57 Sin[11/7 + 23 t])/29) UnitStep[91 Pi - t] UnitStep[-87 Pi + t] + (-532/5 - Sin[13/9 - 37 t]/8 - Sin[11/9 - 24 t]/5 - (7 Sin[38/25 - 20 t])/6 - (12 Sin[11/7 - 19 t])/7 - (42 Sin[11/7 - 12 t])/17 - (17 Sin[14/9 - 4 t])/6 + (82 Sin[11/7 + t])/11 + (270 Sin[33/7 + 2 t])/13 + (16 Sin[11/7 + 3 t])/17 + (8 Sin[61/13 + 5 t])/5 + (37 Sin[33/7 + 6 t])/36 + (7 Sin[17/11 + 7 t])/6 + (11 Sin[47/10 + 8 t])/14 + (2 Sin[41/20 + 9 t])/13 + (10 Sin[7/5 + 10 t])/13 + (12 Sin[21/13 + 11 t])/5 + (37 Sin[17/11 + 13 t])/7 + (18 Sin[51/11 + 14 t])/7 + (8 Sin[23/14 + 15 t])/5 + (79 Sin[17/11 + 16 t])/7 + (49 Sin[17/11 + 17 t])/13 + (39 Sin[23/5 + 18 t])/19 + (3 Sin[14/9 + 21 t])/11 + (27 Sin[61/13 + 22 t])/26 + (3 Sin[11/7 + 23 t])/8 + (2 Sin[11/6 + 25 t])/11 + (3 Sin[37/8 + 26 t])/13 + (10 Sin[14/9 + 27 t])/11 + (2 Sin[14/3 + 28 t])/9 + Sin[21/10 + 29 t]/94 + (2 Sin[17/11 + 30 t])/11 + Sin[48/11 + 31 t]/5 + (10 Sin[3/2 + 32 t])/19 + (5 Sin[10/7 + 33 t])/7 + (22 Sin[37/8 + 34 t])/21 + (3 Sin[65/14 + 35 t])/7 + (4 Sin[11/8 + 36 t])/11 + Sin[17/9 + 38 t]/7 + Sin[15/11 + 39 t]/8) UnitStep[87 Pi - t] UnitStep[-83 Pi + t] + (-1787/16 - Sin[14/9 - 20 t]/11 - (5 Sin[14/9 - 15 t])/14 - (10 Sin[14/9 - 9 t])/11 - (175 Sin[11/7 - 4 t])/27 - (16 Sin[11/7 - 3 t])/9 - (153 Sin[11/7 - t])/13 + (41 Sin[33/7 + 2 t])/13 + (76 Sin[11/7 + 5 t])/25 + (37 Sin[11/7 + 6 t])/14 + (10 Sin[11/7 + 7 t])/13 + (2 Sin[11/7 + 8 t])/7 + Sin[3/2 + 10 t]/26 + (4 Sin[11/7 + 11 t])/9 + (3 Sin[11/7 + 12 t])/10 + (16 Sin[11/7 + 13 t])/15 + (2 Sin[33/7 + 14 t])/7 + (4 Sin[11/7 + 16 t])/15 + Sin[18/11 + 17 t]/19 + (3 Sin[11/7 + 18 t])/7 + (2 Sin[11/7 + 19 t])/9 + Sin[11/7 + 21 t]/5) UnitStep[83 Pi - t] UnitStep[-79 Pi + t] + (-1954/11 - (3 Sin[26/17 - 19 t])/11 - Sin[20/13 - 18 t]/5 - 2 Sin[17/11 - 12 t] - Sin[29/19 - 11 t]/2 - (14 Sin[11/7 - 9 t])/9 - (46 Sin[11/7 - 7 t])/31 + (136 Sin[11/7 + t])/13 + (45 Sin[11/7 + 2 t])/8 + (19 Sin[11/7 + 3 t])/11 + (4 Sin[18/11 + 4 t])/13 + (27 Sin[19/12 + 5 t])/8 + (9 Sin[19/12 + 6 t])/14 + (61 Sin[11/7 + 8 t])/30 + (5 Sin[19/12 + 10 t])/4 + (13 Sin[21/13 + 13 t])/19 + (5 Sin[13/8 + 14 t])/4 + (32 Sin[13/8 + 15 t])/33 + Sin[9/5 + 16 t]/7 + (7 Sin[21/13 + 17 t])/15 + (5 Sin[18/11 + 20 t])/12 + (10 Sin[18/11 + 21 t])/13 + Sin[42/11 + 22 t]/53 + Sin[16/9 + 23 t]/18 + (4 Sin[18/11 + 24 t])/9 + Sin[20/9 + 25 t]/40) UnitStep[79 Pi - t] UnitStep[-75 Pi + t] + (-1760/9 - (5 Sin[14/9 - 25 t])/8 - (5 Sin[14/9 - 18 t])/9 - Sin[11/7 - 17 t]/3 - (4 Sin[11/7 - 15 t])/5 - (10 Sin[11/7 - 11 t])/7 - (36 Sin[11/7 - 9 t])/11 + (50 Sin[33/7 + t])/7 + (79 Sin[11/7 + 2 t])/7 + (45 Sin[33/7 + 3 t])/8 + (16 Sin[11/7 + 4 t])/7 + (3 Sin[14/9 + 5 t])/11 + (5 Sin[75/16 + 6 t])/11 + (31 Sin[19/12 + 7 t])/15 + (10 Sin[11/7 + 8 t])/13 + (12 Sin[11/7 + 10 t])/7 + (18 Sin[13/8 + 12 t])/13 + (56 Sin[8/5 + 13 t])/13 + (31 Sin[21/13 + 14 t])/13 + (4 Sin[11/7 + 16 t])/9 + (4 Sin[21/13 + 19 t])/3 + (2 Sin[17/10 + 20 t])/5 + (6 Sin[8/5 + 21 t])/11 + (2 Sin[8/5 + 22 t])/11 + Sin[30/7 + 23 t]/15 + (4 Sin[21/13 + 24 t])/7 + (4 Sin[23/15 + 26 t])/9) UnitStep[75 Pi - t] UnitStep[-71 Pi + t] + (-1284/5 - (265 Sin[11/7 - 2 t])/13 - (64 Sin[11/7 - t])/7 + (656 Sin[11/7 + 3 t])/15 + (25 Sin[11/7 + 4 t])/3 + (36 Sin[14/9 + 5 t])/35 + Sin[20/13 + 6 t]/10 + (5 Sin[11/7 + 7 t])/8 + (7 Sin[11/7 + 8 t])/13 + (11 Sin[11/7 + 9 t])/5 + (11 Sin[11/7 + 10 t])/8 + (37 Sin[11/7 + 11 t])/14 + Sin[49/11 + 12 t]/32) UnitStep[71 Pi - t] UnitStep[-67 Pi + t] + (-5987/9 - (24 Sin[20/13 - 29 t])/5 - (14 Sin[7/5 - 28 t])/5 - (13 Sin[29/19 - 27 t])/4 - (93 Sin[11/7 - 24 t])/92 - (9 Sin[14/9 - 21 t])/2 - (62 Sin[3/2 - 18 t])/17 - (35 Sin[41/27 - 17 t])/3 - (67 Sin[29/19 - 16 t])/8 - (103 Sin[14/9 - 13 t])/10 - (151 Sin[14/9 - 7 t])/11 - (535 Sin[17/11 - 6 t])/9 - (1483 Sin[14/9 - 5 t])/9 - (82 Sin[14/9 - 2 t])/3 + (295 Sin[11/7 + t])/7 + (1255 Sin[33/7 + 3 t])/33 + (241 Sin[11/7 + 4 t])/3 + (181 Sin[17/11 + 8 t])/14 + (96 Sin[5/3 + 9 t])/19 + (14 Sin[17/12 + 10 t])/11 + (73 Sin[33/7 + 11 t])/11 + (43 Sin[11/7 + 12 t])/4 + (55 Sin[11/7 + 14 t])/7 + (23 Sin[20/13 + 15 t])/14 + (7 Sin[13/9 + 19 t])/8 + (37 Sin[13/8 + 20 t])/8 + (22 Sin[19/12 + 22 t])/7 + (4 Sin[27/16 + 23 t])/3 + (43 Sin[27/16 + 25 t])/44 + (9 Sin[25/17 + 26 t])/11 + (28 Sin[14/9 + 30 t])/9 + (2 Sin[9/2 + 31 t])/5) UnitStep[67 Pi - t] UnitStep[-63 Pi + t] + (-8623/9 - (17 Sin[20/13 - 23 t])/8 - (4 Sin[3/2 - 22 t])/9 - (19 Sin[17/11 - 20 t])/6 - (13 Sin[3/2 - 18 t])/14 - (11 Sin[17/11 - 17 t])/10 - (32 Sin[14/9 - 16 t])/9 - (172 Sin[17/11 - 14 t])/19 - (39 Sin[17/11 - 11 t])/10 - (83 Sin[14/9 - 8 t])/5 - (172 Sin[11/7 - 6 t])/7 - (5083 Sin[11/7 - 4 t])/42 - (100 Sin[14/9 - 2 t])/7 - (131 Sin[14/9 - t])/11 + (373 Sin[11/7 + 3 t])/6 + (183 Sin[47/10 + 5 t])/8 + (104 Sin[20/13 + 7 t])/35 + (428 Sin[19/12 + 9 t])/39 + Sin[13/10 + 10 t]/5 + (20 Sin[47/10 + 12 t])/13 + (7 Sin[93/20 + 13 t])/8 + (17 Sin[61/13 + 15 t])/10 + (25 Sin[8/5 + 19 t])/9 + (4 Sin[19/12 + 21 t])/11) UnitStep[63 Pi - t] UnitStep[-59 Pi + t] + (-3271/6 + Sin[13/10 + t]/69 + (7 Sin[11/7 + 2 t])/9 + (65 Sin[11/7 + 3 t])/14 + Sin[19/12 + 4 t]/8) UnitStep[59 Pi - t] UnitStep[-55 Pi + t] + (-3549/8 - (13 Sin[11/7 - 10 t])/20 - Sin[7/9 - 9 t]/51 - (488 Sin[11/7 - 2 t])/15 + (39 Sin[19/12 + t])/5 + (30 Sin[61/13 + 3 t])/13 + (17 Sin[47/10 + 4 t])/11 + Sin[11/7 + 5 t]/5 + (20 Sin[33/7 + 6 t])/9 + (5 Sin[61/13 + 7 t])/11 + (36 Sin[47/10 + 8 t])/37 + Sin[23/5 + 11 t]/14 + (11 Sin[65/14 + 12 t])/23) UnitStep[55 Pi - t] UnitStep[-51 Pi + t] + (-2227/9 - (9 Sin[19/13 - 7 t])/13 - (57 Sin[3/2 - 5 t])/13 + (1409 Sin[75/16 + t])/9 + (155 Sin[19/12 + 2 t])/11 + (511 Sin[33/7 + 3 t])/34 + (19 Sin[29/12 + 4 t])/12 + (7 Sin[23/8 + 6 t])/11 + (16 Sin[9/7 + 8 t])/15 + Sin[26/7 + 9 t]/9 + (4 Sin[16/13 + 10 t])/3 + (3 Sin[77/17 + 11 t])/4 + (5 Sin[19/12 + 12 t])/8) UnitStep[51 Pi - t] UnitStep[-47 Pi + t] + (-4101/11 - (42 Sin[11/7 - 2 t])/11 + (19 Sin[11/7 + t])/8) UnitStep[47 Pi - t] UnitStep[-43 Pi + t] + (-3113/8 - (38 Sin[11/7 - 3 t])/11 - (399 Sin[11/7 - t])/13 + (92 Sin[11/7 + 2 t])/11 + (3 Sin[11/7 + 4 t])/4) UnitStep[43 Pi - t] UnitStep[-39 Pi + t] + (-4107/31 - Sin[20/13 - 7 t]/4 - (7 Sin[1 - 6 t])/12 - (40 Sin[2/3 - 4 t])/7 - (13 Sin[9/8 - 3 t])/8 + (43 Sin[11/6 + t])/21 + (12 Sin[20/9 + 2 t])/5 + (9 Sin[23/7 + 5 t])/8 + (4 Sin[2/9 + 8 t])/15 + (5 Sin[44/13 + 9 t])/13 + (2 Sin[9/8 + 10 t])/11 + (2 Sin[13/6 + 11 t])/7) UnitStep[39 Pi - t] UnitStep[-35 Pi + t] + (-3675/26 - (19 Sin[3/2 - 4 t])/18 - (31 Sin[11/9 - t])/10 + (50 Sin[13/10 + 2 t])/7 + (36 Sin[17/18 + 3 t])/13 + (3 Sin[7/9 + 5 t])/5 + (2 Sin[33/10 + 6 t])/3 + (7 Sin[1/3 + 7 t])/10 + (4 Sin[48/13 + 8 t])/9 + (5 Sin[1/5 + 9 t])/12 + (2 Sin[23/8 + 10 t])/5 + (2 Sin[4/7 + 11 t])/9 + (3 Sin[154/51 + 12 t])/10) UnitStep[35 Pi - t] UnitStep[-31 Pi + t] + (-1842/13 - (335 Sin[5/8 - t])/11) UnitStep[31 Pi - t] UnitStep[-27 Pi + t] + (-2661/19 - (223 Sin[4/13 - t])/9) UnitStep[27 Pi - t] UnitStep[-23 Pi + t] + (-1336/11 - (17 Sin[4/11 - 11 t])/11 - 4 Sin[7/13 - 7 t] - (8 Sin[36/35 - 5 t])/5 - (317 Sin[7/12 - 3 t])/17 + (379 Sin[8/17 + t])/14 + (163 Sin[26/9 + 2 t])/8 + (71 Sin[21/5 + 4 t])/10 + (17 Sin[17/8 + 6 t])/13 + (17 Sin[38/9 + 8 t])/8 + (35 Sin[1/49 + 9 t])/36 + (9 Sin[28/11 + 10 t])/8 + (6 Sin[85/21 + 12 t])/7) UnitStep[23 Pi - t] UnitStep[-19 Pi + t] + (-525/4 - (30 Sin[13/11 - 8 t])/31 - (17 Sin[14/11 - 5 t])/9 - (68 Sin[3/2 - 4 t])/11 - (541 Sin[3/8 - 3 t])/27 + (348 Sin[9/13 + t])/11 + (283 Sin[58/19 + 2 t])/16 + (23 Sin[2 + 6 t])/9 + (59 Sin[6/19 + 7 t])/16 + Sin[14/3 + 9 t]/2 + (23 Sin[19/8 + 10 t])/10 + (27 Sin[11/16 + 11 t])/20 + (7 Sin[29/10 + 12 t])/9) UnitStep[19 Pi - t] UnitStep[-15 Pi + t] + (-2 - (26 Sin[17/11 - 4 t])/9 - (69 Sin[17/12 - 2 t])/14 + (73 Sin[20/21 + t])/3 + (38 Sin[3/7 + 3 t])/13 + (29 Sin[2/5 + 5 t])/13) UnitStep[15 Pi - t] UnitStep[-11 Pi + t] + (-95/32 - (21 Sin[10/9 - 6 t])/8 - (46 Sin[4/3 - 4 t])/9 - (227 Sin[16/13 - 2 t])/10 - (681 Sin[1/7 - t])/40 + (126 Sin[3/5 + 3 t])/23 + (21 Sin[5/4 + 5 t])/8) UnitStep[11 Pi - t] UnitStep[-7 Pi + t] + (-3953/7 - (4 Sin[3/11 - 10 t])/11 - (9 Sin[13/9 - 9 t])/7 + (3 Sin[11 t])/7 + (832 Sin[38/11 + t])/11 + (93 Sin[7/6 + 2 t])/14 + (34 Sin[53/15 + 3 t])/9 + (9 Sin[17/6 + 4 t])/7 + (23 Sin[29/12 + 5 t])/10 + (12 Sin[55/13 + 6 t])/5 + (17 Sin[1/2 + 7 t])/9 + (15 Sin[14/5 + 8 t])/11 + (4 Sin[42/11 + 12 t])/7) UnitStep[7 Pi - t] UnitStep[-3 Pi + t] + (-2113/9 - (3 Sin[1/10 - 24 t])/8 - (15 Sin[5/7 - 21 t])/14 - (19 Sin[11/23 - 20 t])/12 - (46 Sin[91/90 - 13 t])/11 - (33 Sin[4/3 - 6 t])/10 - (131 Sin[7/8 - 5 t])/13 + (6112 Sin[1/2 + t])/11 + (321 Sin[7/9 + 2 t])/8 + (442 Sin[22/5 + 3 t])/11 + (133 Sin[91/23 + 4 t])/13 + (25 Sin[46/11 + 7 t])/6 + (109 Sin[31/7 + 8 t])/14 + (25 Sin[27/8 + 9 t])/11 + (74 Sin[7/12 + 10 t])/11 + (49 Sin[37/14 + 11 t])/24 + (49 Sin[2/7 + 12 t])/9 + (207 Sin[5/6 + 14 t])/103 + (22 Sin[38/11 + 15 t])/13 + (5 Sin[36/11 + 16 t])/3 + (23 Sin[10/11 + 17 t])/13 + (25 Sin[11/8 + 18 t])/9 + (5 Sin[31/16 + 19 t])/7 + (14 Sin[13/7 + 22 t])/13 + (63 Sin[61/15 + 23 t])/32 + (20 Sin[16/11 + 25 t])/19 + (9 Sin[71/36 + 26 t])/8) UnitStep[3 Pi - t] UnitStep[Pi + t])}, {t, 0, 96 Pi}]
avatar
HURRRR !

25400

tritop
avatar

25401

RIP Margaret Thatcher
avatar

25402

bearbecue (./25399) :
ParametricPlot[{If[Sin[t/2] < 0, I, 1] ((-2201/7 - (3 Sin[11/12 - 80 t])/8 - (10 Sin[17/13 - 70 t])/13 - (11 Sin[7/6 - 63 t])/10 - (5 Sin[23/15 - 59 t])/2 - (25 Sin[11/7 - 39 t])/3 - (12 Sin[11/9 - 28 t])/5 - (79 Sin[5/8 - 24 t])/20 + (1481 Sin[47/10 + t])/7 + (9162 Sin[14/9 + 2 t])/49 + (1209 Sin[47/10 + 3 t])/14 + (599 Sin[11/7 + 4 t])/13 + (179 Sin[33/7 + 5 t])/8 + (367 Sin[65/14 + 6 t])/13 + (279 Sin[34/23 + 7 t])/8 + (41 Sin[12/7 + 8 t])/4 + (628 Sin[93/20 + 9 t])/7 + (119 Sin[11/7 + 10 t])/8 + (433 Sin[25/17 + 11 t])/8 + (753 Sin[40/27 + 12 t])/8 + (319 Sin[51/11 + 13 t])/12 + (2463 Sin[37/8 + 14 t])/22 + (29 Sin[79/17 + 15 t])/15 + (140 Sin[8/5 + 16 t])/11 + (875 Sin[51/11 + 17 t])/11 + (595 Sin[3/2 + 18 t])/9 + (69 Sin[10/7 + 19 t])/4 + (71 Sin[41/9 + 20 t])/6 + (173 Sin[22/15 + 21 t])/7 + (197 Sin[7/5 + 22 t])/12 + (288 Sin[40/27 + 23 t])/7 + (57 Sin[14/9 + 25 t])/4 + (379 Sin[41/9 + 26 t])/13 + (143 Sin[103/23 + 27 t])/15 + (169 Sin[51/11 + 29 t])/8 + (16 Sin[17/10 + 30 t])/3 + (125 Sin[65/14 + 31 t])/8 + (47 Sin[23/5 + 32 t])/4 + (149 Sin[14/3 + 33 t])/14 + (33 Sin[13/3 + 34 t])/10 + (243 Sin[14/3 + 35 t])/22 + (181 Sin[41/9 + 36 t])/15 + (79 Sin[32/7 + 37 t])/5 + (48 Sin[11/7 + 38 t])/11 + (19 Sin[60/13 + 40 t])/14 + (74 Sin[47/10 + 41 t])/17 + (17 Sin[37/25 + 42 t])/10 + (44 Sin[32/7 + 43 t])/19 + (165 Sin[77/17 + 44 t])/13 + (8 Sin[37/15 + 45 t])/7 + (57 Sin[14/15 + 46 t])/23 + (19 Sin[4/3 + 47 t])/11 + (40 Sin[47/10 + 48 t])/9 + (30 Sin[11/7 + 49 t])/11 + (189 Sin[56/13 + 50 t])/38 + (121 Sin[55/12 + 51 t])/27 + (80 Sin[13/10 + 52 t])/13 + (35 Sin[11/10 + 53 t])/11 + (9 Sin[17/7 + 54 t])/13 + (48 Sin[55/12 + 55 t])/19 + (13 Sin[15/11 + 56 t])/4 + (23 Sin[53/12 + 57 t])/6 + (29 Sin[13/9 + 58 t])/11 + (35 Sin[47/11 + 60 t])/8 + (25 Sin[10/7 + 61 t])/17 + (9 Sin[19/12 + 62 t])/7 + (65 Sin[4/3 + 64 t])/16 + (2 Sin[27/7 + 65 t])/13 + (87 Sin[11/8 + 66 t])/44 + (9 Sin[49/11 + 67 t])/5 + Sin[41/12 + 68 t]/2 + (10 Sin[3/2 + 69 t])/13 + (17 Sin[10/9 + 71 t])/8 + (69 Sin[31/7 + 72 t])/35 + (7 Sin[18/5 + 73 t])/9 + (43 Sin[58/13 + 74 t])/21 + (34 Sin[31/7 + 75 t])/23 + (18 Sin[24/23 + 76 t])/17 + (11 Sin[38/9 + 77 t])/4 + (23 Sin[13/3 + 78 t])/7 + (4 Sin[21/16 + 79 t])/13 + (5 Sin[17/13 + 81 t])/8 + (7 Sin[32/7 + 82 t])/5 + (12 Sin[5/4 + 83 t])/7) UnitStep[95 Pi - t] UnitStep[-91 Pi + t] + (-3313/10 - (74 Sin[11/7 - 20 t])/73 - (18 Sin[14/9 - 18 t])/5 - (225 Sin[11/7 - 9 t])/32 - (5492 Sin[11/7 - t])/11 + (1102 Sin[11/7 + 2 t])/5 + (73 Sin[11/7 + 3 t])/2 + (371 Sin[11/7 + 4 t])/11 + (69 Sin[14/9 + 5 t])/7 + (155 Sin[11/7 + 6 t])/9 + (19 Sin[19/12 + 7 t])/8 + (14 Sin[11/7 + 8 t])/9 + (53 Sin[47/10 + 10 t])/12 + (9 Sin[47/10 + 11 t])/11 + (17 Sin[33/7 + 12 t])/6 + Sin[51/11 + 13 t] + (111 Sin[33/7 + 14 t])/17 + (21 Sin[33/7 + 15 t])/10 + (145 Sin[47/10 + 16 t])/36 + (3 Sin[9/2 + 17 t])/8 + (2 Sin[89/19 + 19 t])/7 + (15 Sin[13/8 + 21 t])/16 + (35 Sin[33/7 + 22 t])/13 + (7 Sin[79/17 + 23 t])/9) UnitStep[91 Pi - t] UnitStep[-87 Pi + t] + (133/4 - (5 Sin[11/7 - 25 t])/9 - Sin[1/34 - 21 t]/12 - (18 Sin[14/9 - 19 t])/13 - (3 Sin[13/9 - 17 t])/2 - (8 Sin[20/13 - 13 t])/13 - (71 Sin[14/9 - 10 t])/13 - (37 Sin[14/9 - 8 t])/12 - (8 Sin[14/9 - 6 t])/11 - (23 Sin[14/9 - 5 t])/13 - (7 Sin[31/21 - 3 t])/4 - (31 Sin[14/9 - 2 t])/12 + (506 Sin[33/7 + t])/5 + (11 Sin[37/8 + 4 t])/8 + Sin[79/40 + 7 t]/9 + (5 Sin[59/29 + 9 t])/16 + (43 Sin[11/7 + 11 t])/14 + (29 Sin[47/10 + 12 t])/8 + (5 Sin[11/8 + 14 t])/14 + (33 Sin[47/10 + 15 t])/4 + (4 Sin[23/13 + 16 t])/9 + (13 Sin[5/3 + 18 t])/9 + (30 Sin[19/12 + 20 t])/17 + (11 Sin[21/13 + 22 t])/9 + (13 Sin[47/10 + 23 t])/10 + (9 Sin[20/13 + 24 t])/8 + Sin[17/11 + 26 t]/6 + Sin[41/9 + 27 t]/15 + (6 Sin[14/3 + 28 t])/13 + (3 Sin[3/2 + 29 t])/7 + (3 Sin[14/9 + 30 t])/11 + (2 Sin[5/3 + 31 t])/9 + (4 Sin[16/11 + 32 t])/11 + (10 Sin[89/19 + 33 t])/19 + (7 Sin[14/3 + 34 t])/9 + Sin[65/14 + 35 t]/4 + Sin[3/8 + 36 t]/35 + Sin[20/13 + 37 t]/9 + Sin[47/11 + 38 t]/35 + (2 Sin[37/8 + 39 t])/9) UnitStep[87 Pi - t] UnitStep[-83 Pi + t] + (3090/7 - Sin[17/11 - 15 t]/3 - (12 Sin[11/7 - 14 t])/11 - Sin[14/9 - 12 t]/3 - Sin[14/9 - 10 t]/6 - (85 Sin[11/7 - 4 t])/9 + (68 Sin[11/7 + t])/9 + (5 Sin[19/12 + 2 t])/14 + (3 Sin[26/17 + 3 t])/7 + (127 Sin[11/7 + 5 t])/10 + (40 Sin[11/7 + 6 t])/9 + (7 Sin[11/7 + 7 t])/4 + (13 Sin[11/7 + 8 t])/11 + (14 Sin[11/7 + 9 t])/15 + Sin[10/7 + 11 t]/49 + (3 Sin[11/7 + 13 t])/4 + (2 Sin[11/7 + 16 t])/13 + (4 Sin[19/12 + 17 t])/11 + Sin[14/9 + 18 t]/7 + (4 Sin[11/7 + 19 t])/9 + Sin[19/12 + 20 t]/4 + Sin[14/9 + 21 t]/6) UnitStep[83 Pi - t] UnitStep[-79 Pi + t] + (1121/3 - Sin[17/11 - 24 t]/19 - (2 Sin[14/9 - 18 t])/5 - Sin[19/13 - 15 t]/8 - (7 Sin[20/13 - 14 t])/20 - Sin[13/9 - 13 t]/20 - (10 Sin[14/9 - 8 t])/9 + (353 Sin[11/7 + t])/12 + (27 Sin[8/5 + 2 t])/20 + (8 Sin[11/7 + 3 t])/3 + (3 Sin[14/3 + 4 t])/8 + (23 Sin[11/7 + 5 t])/10 + (9 Sin[33/7 + 6 t])/11 + Sin[17/11 + 7 t]/2 + (9 Sin[19/12 + 9 t])/11 + Sin[68/15 + 10 t]/11 + (4 Sin[8/5 + 11 t])/7 + Sin[41/9 + 12 t]/19 + Sin[19/12 + 17 t]/8 + Sin[11/7 + 19 t]/4 + Sin[89/19 + 20 t]/8 + Sin[8/5 + 21 t]/6 + Sin[7/6 + 23 t]/93 + Sin[5/3 + 25 t]/9) UnitStep[79 Pi - t] UnitStep[-75 Pi + t] + (61/6 - (5 Sin[17/11 - 25 t])/9 - (7 Sin[14/9 - 9 t])/9 + (379 Sin[11/7 + t])/6 + (101 Sin[11/7 + 2 t])/9 + (79 Sin[11/7 + 3 t])/16 + (29 Sin[19/12 + 4 t])/10 + (27 Sin[19/12 + 5 t])/7 + (13 Sin[8/5 + 6 t])/9 + (3 Sin[8/5 + 7 t])/2 + (3 Sin[11/7 + 8 t])/4 + (7 Sin[19/12 + 10 t])/10 + (3 Sin[47/10 + 11 t])/8 + Sin[8/5 + 12 t]/3 + Sin[13/8 + 13 t]/13 + (2 Sin[13/8 + 14 t])/7 + Sin[14/3 + 15 t]/9 + (5 Sin[19/12 + 16 t])/12 + Sin[61/13 + 17 t]/3 + Sin[19/12 + 18 t]/8 + (2 Sin[8/5 + 19 t])/9 + Sin[33/7 + 20 t]/6 + Sin[19/12 + 21 t]/13 + (2 Sin[19/12 + 22 t])/11 + Sin[33/7 + 23 t]/4 + (2 Sin[14/9 + 24 t])/11 + (2 Sin[11/7 + 26 t])/5) UnitStep[75 Pi - t] UnitStep[-71 Pi + t] + (-2254/5 - (17 Sin[11/7 - 11 t])/16 - (145 Sin[14/9 - 9 t])/48 - (87 Sin[11/7 - 5 t])/8 - (235 Sin[11/7 - 3 t])/9 - (43 Sin[11/7 - 2 t])/2 + (187 Sin[11/7 + t])/10 + (54 Sin[19/12 + 4 t])/11 + (9 Sin[11/7 + 6 t])/5 + (321 Sin[11/7 + 7 t])/80 + 2 Sin[11/7 + 8 t] + Sin[51/11 + 10 t]/15 + (6 Sin[11/7 + 12 t])/13) UnitStep[71 Pi - t] UnitStep[-67 Pi + t] + (-15833/26 - Sin[11/8 - 30 t]/3 - (9 Sin[3/2 - 29 t])/5 - (11 Sin[19/13 - 28 t])/6 - (2 Sin[16/11 - 25 t])/5 - (28 Sin[3/2 - 24 t])/13 - (13 Sin[3/2 - 23 t])/9 - (10 Sin[7/5 - 22 t])/11 - (16 Sin[3/2 - 21 t])/7 - Sin[10/9 - 19 t]/3 - (25 Sin[29/19 - 18 t])/7 - (25 Sin[22/15 - 17 t])/6 - (19 Sin[17/11 - 16 t])/4 - (40 Sin[19/13 - 14 t])/39 - (78 Sin[17/11 - 13 t])/11 - (50 Sin[20/13 - 10 t])/7 - (23 Sin[14/9 - 9 t])/8 - (67 Sin[3/2 - 8 t])/10 - (57 Sin[25/17 - 7 t])/13 - (1709 Sin[14/9 - 6 t])/28 - (745 Sin[14/9 - 5 t])/9 + (129 Sin[11/7 + t])/7 + (487 Sin[11/7 + 2 t])/11 + (640 Sin[33/7 + 3 t])/13 + (3565 Sin[11/7 + 4 t])/44 + (2 Sin[9/7 + 11 t])/11 + (68 Sin[11/7 + 12 t])/13 + (9 Sin[3/2 + 15 t])/5 + (11 Sin[13/8 + 20 t])/10 + Sin[17/12 + 26 t]/6 + (6 Sin[21/13 + 27 t])/7 + (4 Sin[19/12 + 31 t])/3) UnitStep[67 Pi - t] UnitStep[-63 Pi + t] + (-1217/10 - (4 Sin[11/7 - 22 t])/11 - (10 Sin[19/13 - 21 t])/19 - (11 Sin[25/17 - 19 t])/15 - (8 Sin[17/12 - 18 t])/13 - (13 Sin[14/9 - 16 t])/11 - (74 Sin[23/15 - 15 t])/21 - (42 Sin[14/9 - 13 t])/11 - (11 Sin[3/2 - 12 t])/8 - (10 Sin[14/9 - 11 t])/11 - (53 Sin[14/9 - 9 t])/5 - (184 Sin[11/7 - 6 t])/7 - (964 Sin[11/7 - 3 t])/15 - 692 Sin[11/7 - t] + (254 Sin[61/13 + 2 t])/11 + (19 Sin[19/13 + 4 t])/6 + (529 Sin[47/10 + 5 t])/44 + (28 Sin[14/9 + 7 t])/9 + (13 Sin[18/11 + 8 t])/8 + (38 Sin[3/2 + 10 t])/39 + (26 Sin[23/14 + 14 t])/11 + (11 Sin[22/13 + 17 t])/16 + (6 Sin[18/11 + 20 t])/7 + (7 Sin[47/10 + 23 t])/10) UnitStep[63 Pi - t] UnitStep[-59 Pi + t] + (2063/10 + (369 Sin[11/7 + t])/5 + Sin[47/10 + 2 t] + (87 Sin[11/7 + 3 t])/10 + Sin[8/5 + 4 t]/6) UnitStep[59 Pi - t] UnitStep[-55 Pi + t] + (11423/42 + (238 Sin[33/7 + t])/9 + (21 Sin[47/10 + 2 t])/5 + Sin[14/13 + 3 t]/7 + (53 Sin[11/7 + 4 t])/11 + (17 Sin[47/10 + 5 t])/6 + (19 Sin[75/16 + 6 t])/18 + Sin[3/2 + 7 t]/2 + (28 Sin[17/11 + 8 t])/19 + (5 Sin[61/13 + 9 t])/7 + (10 Sin[14/3 + 10 t])/21 + (10 Sin[14/9 + 11 t])/21 + (10 Sin[17/11 + 12 t])/11) UnitStep[55 Pi - t] UnitStep[-51 Pi + t] + (895/3 - (15 Sin[4/3 - 7 t])/14 + (265 Sin[23/15 + t])/14 + (75 Sin[60/13 + 2 t])/8 + (296 Sin[37/8 + 3 t])/11 + (297 Sin[113/25 + 4 t])/37 + (128 Sin[37/8 + 5 t])/17 + (25 Sin[21/13 + 6 t])/11 + (8 Sin[9/5 + 8 t])/9 + (23 Sin[59/13 + 9 t])/9 + (11 Sin[46/11 + 10 t])/9 + (32 Sin[22/5 + 11 t])/11 + (8 Sin[21/5 + 12 t])/7) UnitStep[51 Pi - t] UnitStep[-47 Pi + t] + (3860/17 + (509 Sin[11/7 + t])/17 + (4 Sin[19/12 + 2 t])/9) UnitStep[47 Pi - t] UnitStep[-43 Pi + t] + (2777/17 + (1001 Sin[11/7 + t])/40 + (37 Sin[11/7 + 2 t])/4 + (28 Sin[11/7 + 3 t])/13 + (17 Sin[19/12 + 4 t])/13) UnitStep[43 Pi - t] UnitStep[-39 Pi + t] + (5103/16 + (15 Sin[9/11 + t])/4 + (32 Sin[137/46 + 2 t])/13 + (7 Sin[2/5 + 3 t])/8 + (36 Sin[42/11 + 4 t])/7 + (11 Sin[4/7 + 5 t])/12 + (15 Sin[25/6 + 6 t])/11 + (5 Sin[2/9 + 7 t])/8 + (7 Sin[32/9 + 8 t])/9 + (5 Sin[3/8 + 9 t])/12 + (8 Sin[25/8 + 10 t])/13 + (6 Sin[1/26 + 11 t])/11) UnitStep[39 Pi - t] UnitStep[-35 Pi + t] + (145/9 - (3 Sin[13/25 - 9 t])/10 - (65 Sin[1/2 - 7 t])/64 - (8 Sin[1/32 - 5 t])/9 - (17 Sin[5/12 - 3 t])/6 - (65 Sin[11/21 - 2 t])/16 + (91 Sin[35/8 + t])/16 + (17 Sin[13/4 + 4 t])/11 + (7 Sin[31/9 + 6 t])/15 + (3 Sin[29/9 + 8 t])/5 + (4 Sin[21/8 + 10 t])/11 + (4 Sin[1/20 + 11 t])/11 + (2 Sin[23/7 + 12 t])/5) UnitStep[35 Pi - t] UnitStep[-31 Pi + t] + (1579/5 + (205 Sin[5/6 + t])/7) UnitStep[31 Pi - t] UnitStep[-27 Pi + t] + (69/4 + (221 Sin[5/4 + t])/7) UnitStep[27 Pi - t] UnitStep[-23 Pi + t] + (4484/13 - Sin[14/11 - 12 t]/2 - (5 Sin[3/13 - 11 t])/11 - (6 Sin[15/14 - 8 t])/11 - (7 Sin[4/9 - 7 t])/6 - (23 Sin[1/25 - 3 t])/7 - (34 Sin[11/17 - t])/5 + (641 Sin[41/9 + 2 t])/11 + (17 Sin[75/16 + 4 t])/13 + Sin[59/15 + 5 t]/3 + (41 Sin[46/11 + 6 t])/11 + (5 Sin[21/5 + 9 t])/11 + (19 Sin[42/11 + 10 t])/18) UnitStep[23 Pi - t] UnitStep[-19 Pi + t] + (548/15 - (29 Sin[1/2 - 10 t])/12 - (7 Sin[8/7 - 9 t])/11 - (9 Sin[2/11 - 8 t])/11 - (32 Sin[1 - 6 t])/5 - (8 Sin[2/7 - 5 t])/7 - (3 Sin[1/2 - 4 t])/7 - (757 Sin[7/5 - 2 t])/9 - (133 Sin[1/4 - t])/12 + (69 Sin[4/9 + 3 t])/17 + (17 Sin[5/6 + 7 t])/10 + (9 Sin[17/18 + 11 t])/10 + (7 Sin[2/11 + 12 t])/12) UnitStep[19 Pi - t] UnitStep[-15 Pi + t] + (4113/11 + (425 Sin[23/15 + t])/8 + (15 Sin[121/60 + 2 t])/11 + (26 Sin[16/13 + 3 t])/5 + (9 Sin[17/9 + 4 t])/11 + Sin[13/12 + 5 t]) UnitStep[15 Pi - t] UnitStep[-11 Pi + t] + (186/7 + (1303 Sin[19/12 + t])/10 + (2 Sin[19/9 + 2 t])/5 + (78 Sin[14/9 + 3 t])/7 + (11 Sin[17/7 + 4 t])/9 + (24 Sin[22/13 + 5 t])/7 + (4 Sin[25/9 + 6 t])/5) UnitStep[11 Pi - t] UnitStep[-7 Pi + t] + (2609/12 - (11 Sin[5/7 - 8 t])/17 - (6 Sin[1/5 - 6 t])/5 - (63 Sin[2/3 - 4 t])/16 - (108 Sin[11/7 - 2 t])/13 - (293 Sin[13/9 - t])/3 + (169 Sin[32/7 + 3 t])/56 + (2 Sin[26/15 + 5 t])/7 + (4 Sin[19/14 + 7 t])/7 + (9 Sin[66/65 + 9 t])/10 + Sin[117/29 + 10 t]/6 + Sin[13/5 + 11 t]/3 + (4 Sin[11/21 + 12 t])/13) UnitStep[7 Pi - t] UnitStep[-3 Pi + t] + (349/11 - (4 Sin[7/12 - 23 t])/5 - (17 Sin[5/6 - 19 t])/10 - (19 Sin[1/3 - 16 t])/8 - (13 Sin[17/13 - 11 t])/8 - (47 Sin[7/6 - 9 t])/8 - (227 Sin[3/10 - 4 t])/13 - (394 Sin[4/5 - 2 t])/9 + (5455 Sin[63/32 + t])/12 + (195 Sin[9/10 + 3 t])/7 + (123 Sin[4 + 5 t])/8 + (131 Sin[6/13 + 6 t])/13 + (88 Sin[25/6 + 7 t])/13 + (75 Sin[13/9 + 8 t])/13 + (67 Sin[17/8 + 10 t])/10 + (31 Sin[53/12 + 12 t])/13 + (41 Sin[3/5 + 13 t])/14 + (10 Sin[1/15 + 14 t])/7 + (10 Sin[56/15 + 15 t])/13 + (57 Sin[12/23 + 17 t])/29 + (26 Sin[22/21 + 18 t])/25 + (23 Sin[5/14 + 20 t])/8 + (7 Sin[3/10 + 21 t])/3 + (10 Sin[13/8 + 22 t])/7 + (19 Sin[8/7 + 24 t])/10 + (18 Sin[19/14 + 25 t])/17 + (13 Sin[29/11 + 26 t])/8) UnitStep[3 Pi - t] UnitStep[Pi + t]), If[Sin[t/2] < 0, I, 1] ((3132/13 - (3 Sin[13/9 - 75 t])/8 - (11 Sin[9/8 - 68 t])/8 - (8 Sin[4/9 - 64 t])/7 - (4 Sin[13/11 - 62 t])/11 - (15 Sin[12/25 - 52 t])/13 - (46 Sin[9/17 - 50 t])/31 - (10 Sin[8/13 - 40 t])/13 - (23 Sin[25/17 - 36 t])/6 - (80 Sin[40/27 - 27 t])/11 - (55 Sin[7/5 - 25 t])/7 - (379 Sin[20/13 - 16 t])/27 - (201 Sin[17/11 - 6 t])/11 + (1837 Sin[33/7 + t])/6 + (17 Sin[20/13 + 2 t])/18 + (40 Sin[3/2 + 3 t])/3 + (527 Sin[61/13 + 4 t])/16 + (106 Sin[37/8 + 5 t])/11 + (67 Sin[14/9 + 7 t])/5 + (320 Sin[14/3 + 8 t])/9 + (292 Sin[23/5 + 9 t])/9 + (353 Sin[75/16 + 10 t])/14 + (763 Sin[40/27 + 11 t])/12 + (689 Sin[28/19 + 12 t])/10 + (144 Sin[32/7 + 13 t])/13 + (989 Sin[37/8 + 14 t])/12 + (187 Sin[32/7 + 15 t])/7 + (67 Sin[13/7 + 17 t])/15 + (187 Sin[75/16 + 18 t])/10 + (153 Sin[3/2 + 19 t])/4 + (23 Sin[7/8 + 20 t])/12 + (137 Sin[10/7 + 21 t])/6 + (99 Sin[3/2 + 22 t])/4 + (343 Sin[60/13 + 23 t])/10 + (249 Sin[20/13 + 24 t])/14 + (33 Sin[20/13 + 26 t])/2 + (88 Sin[58/13 + 28 t])/13 + (57 Sin[37/8 + 29 t])/4 + (26 Sin[40/9 + 30 t])/11 + (102 Sin[32/7 + 31 t])/7 + (136 Sin[23/5 + 32 t])/13 + (86 Sin[41/9 + 33 t])/11 + (140 Sin[23/5 + 34 t])/13 + (49 Sin[4/3 + 35 t])/6 + (172 Sin[85/19 + 37 t])/13 + (130 Sin[50/11 + 38 t])/11 + (8 Sin[20/11 + 39 t])/9 + (38 Sin[14/11 + 41 t])/9 + (10 Sin[15/13 + 42 t])/3 + (6 Sin[17/9 + 43 t])/7 + (19 Sin[5/7 + 44 t])/15 + (23 Sin[38/25 + 45 t])/7 + (223 Sin[59/13 + 46 t])/16 + (19 Sin[13/6 + 47 t])/9 + (128 Sin[23/5 + 48 t])/15 + (27 Sin[22/13 + 49 t])/8 + (64 Sin[3/2 + 51 t])/13 + (33 Sin[17/11 + 53 t])/10 + (21 Sin[103/23 + 54 t])/11 + (45 Sin[10/7 + 55 t])/13 + (13 Sin[75/16 + 56 t])/7 + (15 Sin[15/8 + 57 t])/16 + (37 Sin[7/6 + 58 t])/16 + (45 Sin[3/2 + 59 t])/23 + (406 Sin[86/19 + 60 t])/81 + (16 Sin[9/4 + 61 t])/11 + (52 Sin[13/9 + 63 t])/11 + (45 Sin[16/11 + 65 t])/8 + (19 Sin[23/5 + 66 t])/10 + (59 Sin[17/11 + 67 t])/13 + (21 Sin[7/5 + 69 t])/5 + (11 Sin[9/2 + 70 t])/9 + (4 Sin[23/7 + 71 t])/5 + (22 Sin[8/7 + 72 t])/7 + (10 Sin[18/19 + 73 t])/7 + (3 Sin[63/16 + 74 t])/4 + (16 Sin[10/7 + 76 t])/15 + (17 Sin[40/9 + 77 t])/6 + (17 Sin[29/7 + 78 t])/14 + (42 Sin[30/7 + 79 t])/17 + (44 Sin[47/11 + 80 t])/19 + (6 Sin[5/6 + 81 t])/13 + (10 Sin[7/10 + 82 t])/7 + (8 Sin[21/5 + 83 t])/11) UnitStep[95 Pi - t] UnitStep[-91 Pi + t] + (2062/7 - (3 Sin[12/11 - 20 t])/14 - (19 Sin[3/2 - 12 t])/11 - (17 Sin[14/9 - 6 t])/3 - (197 Sin[11/7 - 4 t])/6 + (3611 Sin[33/7 + t])/9 + (7469 Sin[33/7 + 2 t])/30 + (189 Sin[11/7 + 3 t])/4 + (357 Sin[11/7 + 5 t])/11 + (49 Sin[11/7 + 7 t])/4 + (73 Sin[11/7 + 8 t])/11 + (131 Sin[11/7 + 9 t])/13 + (42 Sin[20/13 + 10 t])/11 + (56 Sin[11/7 + 11 t])/5 + (97 Sin[11/7 + 13 t])/9 + (29 Sin[23/15 + 14 t])/13 + (22 Sin[14/9 + 15 t])/3 + (18 Sin[11/7 + 16 t])/7 + (24 Sin[11/7 + 17 t])/5 + (18 Sin[14/9 + 18 t])/7 + (20 Sin[14/9 + 19 t])/3 + (18 Sin[14/9 + 21 t])/5 + (12 Sin[11/7 + 22 t])/7 + (57 Sin[11/7 + 23 t])/29) UnitStep[91 Pi - t] UnitStep[-87 Pi + t] + (-532/5 - Sin[13/9 - 37 t]/8 - Sin[11/9 - 24 t]/5 - (7 Sin[38/25 - 20 t])/6 - (12 Sin[11/7 - 19 t])/7 - (42 Sin[11/7 - 12 t])/17 - (17 Sin[14/9 - 4 t])/6 + (82 Sin[11/7 + t])/11 + (270 Sin[33/7 + 2 t])/13 + (16 Sin[11/7 + 3 t])/17 + (8 Sin[61/13 + 5 t])/5 + (37 Sin[33/7 + 6 t])/36 + (7 Sin[17/11 + 7 t])/6 + (11 Sin[47/10 + 8 t])/14 + (2 Sin[41/20 + 9 t])/13 + (10 Sin[7/5 + 10 t])/13 + (12 Sin[21/13 + 11 t])/5 + (37 Sin[17/11 + 13 t])/7 + (18 Sin[51/11 + 14 t])/7 + (8 Sin[23/14 + 15 t])/5 + (79 Sin[17/11 + 16 t])/7 + (49 Sin[17/11 + 17 t])/13 + (39 Sin[23/5 + 18 t])/19 + (3 Sin[14/9 + 21 t])/11 + (27 Sin[61/13 + 22 t])/26 + (3 Sin[11/7 + 23 t])/8 + (2 Sin[11/6 + 25 t])/11 + (3 Sin[37/8 + 26 t])/13 + (10 Sin[14/9 + 27 t])/11 + (2 Sin[14/3 + 28 t])/9 + Sin[21/10 + 29 t]/94 + (2 Sin[17/11 + 30 t])/11 + Sin[48/11 + 31 t]/5 + (10 Sin[3/2 + 32 t])/19 + (5 Sin[10/7 + 33 t])/7 + (22 Sin[37/8 + 34 t])/21 + (3 Sin[65/14 + 35 t])/7 + (4 Sin[11/8 + 36 t])/11 + Sin[17/9 + 38 t]/7 + Sin[15/11 + 39 t]/8) UnitStep[87 Pi - t] UnitStep[-83 Pi + t] + (-1787/16 - Sin[14/9 - 20 t]/11 - (5 Sin[14/9 - 15 t])/14 - (10 Sin[14/9 - 9 t])/11 - (175 Sin[11/7 - 4 t])/27 - (16 Sin[11/7 - 3 t])/9 - (153 Sin[11/7 - t])/13 + (41 Sin[33/7 + 2 t])/13 + (76 Sin[11/7 + 5 t])/25 + (37 Sin[11/7 + 6 t])/14 + (10 Sin[11/7 + 7 t])/13 + (2 Sin[11/7 + 8 t])/7 + Sin[3/2 + 10 t]/26 + (4 Sin[11/7 + 11 t])/9 + (3 Sin[11/7 + 12 t])/10 + (16 Sin[11/7 + 13 t])/15 + (2 Sin[33/7 + 14 t])/7 + (4 Sin[11/7 + 16 t])/15 + Sin[18/11 + 17 t]/19 + (3 Sin[11/7 + 18 t])/7 + (2 Sin[11/7 + 19 t])/9 + Sin[11/7 + 21 t]/5) UnitStep[83 Pi - t] UnitStep[-79 Pi + t] + (-1954/11 - (3 Sin[26/17 - 19 t])/11 - Sin[20/13 - 18 t]/5 - 2 Sin[17/11 - 12 t] - Sin[29/19 - 11 t]/2 - (14 Sin[11/7 - 9 t])/9 - (46 Sin[11/7 - 7 t])/31 + (136 Sin[11/7 + t])/13 + (45 Sin[11/7 + 2 t])/8 + (19 Sin[11/7 + 3 t])/11 + (4 Sin[18/11 + 4 t])/13 + (27 Sin[19/12 + 5 t])/8 + (9 Sin[19/12 + 6 t])/14 + (61 Sin[11/7 + 8 t])/30 + (5 Sin[19/12 + 10 t])/4 + (13 Sin[21/13 + 13 t])/19 + (5 Sin[13/8 + 14 t])/4 + (32 Sin[13/8 + 15 t])/33 + Sin[9/5 + 16 t]/7 + (7 Sin[21/13 + 17 t])/15 + (5 Sin[18/11 + 20 t])/12 + (10 Sin[18/11 + 21 t])/13 + Sin[42/11 + 22 t]/53 + Sin[16/9 + 23 t]/18 + (4 Sin[18/11 + 24 t])/9 + Sin[20/9 + 25 t]/40) UnitStep[79 Pi - t] UnitStep[-75 Pi + t] + (-1760/9 - (5 Sin[14/9 - 25 t])/8 - (5 Sin[14/9 - 18 t])/9 - Sin[11/7 - 17 t]/3 - (4 Sin[11/7 - 15 t])/5 - (10 Sin[11/7 - 11 t])/7 - (36 Sin[11/7 - 9 t])/11 + (50 Sin[33/7 + t])/7 + (79 Sin[11/7 + 2 t])/7 + (45 Sin[33/7 + 3 t])/8 + (16 Sin[11/7 + 4 t])/7 + (3 Sin[14/9 + 5 t])/11 + (5 Sin[75/16 + 6 t])/11 + (31 Sin[19/12 + 7 t])/15 + (10 Sin[11/7 + 8 t])/13 + (12 Sin[11/7 + 10 t])/7 + (18 Sin[13/8 + 12 t])/13 + (56 Sin[8/5 + 13 t])/13 + (31 Sin[21/13 + 14 t])/13 + (4 Sin[11/7 + 16 t])/9 + (4 Sin[21/13 + 19 t])/3 + (2 Sin[17/10 + 20 t])/5 + (6 Sin[8/5 + 21 t])/11 + (2 Sin[8/5 + 22 t])/11 + Sin[30/7 + 23 t]/15 + (4 Sin[21/13 + 24 t])/7 + (4 Sin[23/15 + 26 t])/9) UnitStep[75 Pi - t] UnitStep[-71 Pi + t] + (-1284/5 - (265 Sin[11/7 - 2 t])/13 - (64 Sin[11/7 - t])/7 + (656 Sin[11/7 + 3 t])/15 + (25 Sin[11/7 + 4 t])/3 + (36 Sin[14/9 + 5 t])/35 + Sin[20/13 + 6 t]/10 + (5 Sin[11/7 + 7 t])/8 + (7 Sin[11/7 + 8 t])/13 + (11 Sin[11/7 + 9 t])/5 + (11 Sin[11/7 + 10 t])/8 + (37 Sin[11/7 + 11 t])/14 + Sin[49/11 + 12 t]/32) UnitStep[71 Pi - t] UnitStep[-67 Pi + t] + (-5987/9 - (24 Sin[20/13 - 29 t])/5 - (14 Sin[7/5 - 28 t])/5 - (13 Sin[29/19 - 27 t])/4 - (93 Sin[11/7 - 24 t])/92 - (9 Sin[14/9 - 21 t])/2 - (62 Sin[3/2 - 18 t])/17 - (35 Sin[41/27 - 17 t])/3 - (67 Sin[29/19 - 16 t])/8 - (103 Sin[14/9 - 13 t])/10 - (151 Sin[14/9 - 7 t])/11 - (535 Sin[17/11 - 6 t])/9 - (1483 Sin[14/9 - 5 t])/9 - (82 Sin[14/9 - 2 t])/3 + (295 Sin[11/7 + t])/7 + (1255 Sin[33/7 + 3 t])/33 + (241 Sin[11/7 + 4 t])/3 + (181 Sin[17/11 + 8 t])/14 + (96 Sin[5/3 + 9 t])/19 + (14 Sin[17/12 + 10 t])/11 + (73 Sin[33/7 + 11 t])/11 + (43 Sin[11/7 + 12 t])/4 + (55 Sin[11/7 + 14 t])/7 + (23 Sin[20/13 + 15 t])/14 + (7 Sin[13/9 + 19 t])/8 + (37 Sin[13/8 + 20 t])/8 + (22 Sin[19/12 + 22 t])/7 + (4 Sin[27/16 + 23 t])/3 + (43 Sin[27/16 + 25 t])/44 + (9 Sin[25/17 + 26 t])/11 + (28 Sin[14/9 + 30 t])/9 + (2 Sin[9/2 + 31 t])/5) UnitStep[67 Pi - t] UnitStep[-63 Pi + t] + (-8623/9 - (17 Sin[20/13 - 23 t])/8 - (4 Sin[3/2 - 22 t])/9 - (19 Sin[17/11 - 20 t])/6 - (13 Sin[3/2 - 18 t])/14 - (11 Sin[17/11 - 17 t])/10 - (32 Sin[14/9 - 16 t])/9 - (172 Sin[17/11 - 14 t])/19 - (39 Sin[17/11 - 11 t])/10 - (83 Sin[14/9 - 8 t])/5 - (172 Sin[11/7 - 6 t])/7 - (5083 Sin[11/7 - 4 t])/42 - (100 Sin[14/9 - 2 t])/7 - (131 Sin[14/9 - t])/11 + (373 Sin[11/7 + 3 t])/6 + (183 Sin[47/10 + 5 t])/8 + (104 Sin[20/13 + 7 t])/35 + (428 Sin[19/12 + 9 t])/39 + Sin[13/10 + 10 t]/5 + (20 Sin[47/10 + 12 t])/13 + (7 Sin[93/20 + 13 t])/8 + (17 Sin[61/13 + 15 t])/10 + (25 Sin[8/5 + 19 t])/9 + (4 Sin[19/12 + 21 t])/11) UnitStep[63 Pi - t] UnitStep[-59 Pi + t] + (-3271/6 + Sin[13/10 + t]/69 + (7 Sin[11/7 + 2 t])/9 + (65 Sin[11/7 + 3 t])/14 + Sin[19/12 + 4 t]/8) UnitStep[59 Pi - t] UnitStep[-55 Pi + t] + (-3549/8 - (13 Sin[11/7 - 10 t])/20 - Sin[7/9 - 9 t]/51 - (488 Sin[11/7 - 2 t])/15 + (39 Sin[19/12 + t])/5 + (30 Sin[61/13 + 3 t])/13 + (17 Sin[47/10 + 4 t])/11 + Sin[11/7 + 5 t]/5 + (20 Sin[33/7 + 6 t])/9 + (5 Sin[61/13 + 7 t])/11 + (36 Sin[47/10 + 8 t])/37 + Sin[23/5 + 11 t]/14 + (11 Sin[65/14 + 12 t])/23) UnitStep[55 Pi - t] UnitStep[-51 Pi + t] + (-2227/9 - (9 Sin[19/13 - 7 t])/13 - (57 Sin[3/2 - 5 t])/13 + (1409 Sin[75/16 + t])/9 + (155 Sin[19/12 + 2 t])/11 + (511 Sin[33/7 + 3 t])/34 + (19 Sin[29/12 + 4 t])/12 + (7 Sin[23/8 + 6 t])/11 + (16 Sin[9/7 + 8 t])/15 + Sin[26/7 + 9 t]/9 + (4 Sin[16/13 + 10 t])/3 + (3 Sin[77/17 + 11 t])/4 + (5 Sin[19/12 + 12 t])/8) UnitStep[51 Pi - t] UnitStep[-47 Pi + t] + (-4101/11 - (42 Sin[11/7 - 2 t])/11 + (19 Sin[11/7 + t])/8) UnitStep[47 Pi - t] UnitStep[-43 Pi + t] + (-3113/8 - (38 Sin[11/7 - 3 t])/11 - (399 Sin[11/7 - t])/13 + (92 Sin[11/7 + 2 t])/11 + (3 Sin[11/7 + 4 t])/4) UnitStep[43 Pi - t] UnitStep[-39 Pi + t] + (-4107/31 - Sin[20/13 - 7 t]/4 - (7 Sin[1 - 6 t])/12 - (40 Sin[2/3 - 4 t])/7 - (13 Sin[9/8 - 3 t])/8 + (43 Sin[11/6 + t])/21 + (12 Sin[20/9 + 2 t])/5 + (9 Sin[23/7 + 5 t])/8 + (4 Sin[2/9 + 8 t])/15 + (5 Sin[44/13 + 9 t])/13 + (2 Sin[9/8 + 10 t])/11 + (2 Sin[13/6 + 11 t])/7) UnitStep[39 Pi - t] UnitStep[-35 Pi + t] + (-3675/26 - (19 Sin[3/2 - 4 t])/18 - (31 Sin[11/9 - t])/10 + (50 Sin[13/10 + 2 t])/7 + (36 Sin[17/18 + 3 t])/13 + (3 Sin[7/9 + 5 t])/5 + (2 Sin[33/10 + 6 t])/3 + (7 Sin[1/3 + 7 t])/10 + (4 Sin[48/13 + 8 t])/9 + (5 Sin[1/5 + 9 t])/12 + (2 Sin[23/8 + 10 t])/5 + (2 Sin[4/7 + 11 t])/9 + (3 Sin[154/51 + 12 t])/10) UnitStep[35 Pi - t] UnitStep[-31 Pi + t] + (-1842/13 - (335 Sin[5/8 - t])/11) UnitStep[31 Pi - t] UnitStep[-27 Pi + t] + (-2661/19 - (223 Sin[4/13 - t])/9) UnitStep[27 Pi - t] UnitStep[-23 Pi + t] + (-1336/11 - (17 Sin[4/11 - 11 t])/11 - 4 Sin[7/13 - 7 t] - (8 Sin[36/35 - 5 t])/5 - (317 Sin[7/12 - 3 t])/17 + (379 Sin[8/17 + t])/14 + (163 Sin[26/9 + 2 t])/8 + (71 Sin[21/5 + 4 t])/10 + (17 Sin[17/8 + 6 t])/13 + (17 Sin[38/9 + 8 t])/8 + (35 Sin[1/49 + 9 t])/36 + (9 Sin[28/11 + 10 t])/8 + (6 Sin[85/21 + 12 t])/7) UnitStep[23 Pi - t] UnitStep[-19 Pi + t] + (-525/4 - (30 Sin[13/11 - 8 t])/31 - (17 Sin[14/11 - 5 t])/9 - (68 Sin[3/2 - 4 t])/11 - (541 Sin[3/8 - 3 t])/27 + (348 Sin[9/13 + t])/11 + (283 Sin[58/19 + 2 t])/16 + (23 Sin[2 + 6 t])/9 + (59 Sin[6/19 + 7 t])/16 + Sin[14/3 + 9 t]/2 + (23 Sin[19/8 + 10 t])/10 + (27 Sin[11/16 + 11 t])/20 + (7 Sin[29/10 + 12 t])/9) UnitStep[19 Pi - t] UnitStep[-15 Pi + t] + (-2 - (26 Sin[17/11 - 4 t])/9 - (69 Sin[17/12 - 2 t])/14 + (73 Sin[20/21 + t])/3 + (38 Sin[3/7 + 3 t])/13 + (29 Sin[2/5 + 5 t])/13) UnitStep[15 Pi - t] UnitStep[-11 Pi + t] + (-95/32 - (21 Sin[10/9 - 6 t])/8 - (46 Sin[4/3 - 4 t])/9 - (227 Sin[16/13 - 2 t])/10 - (681 Sin[1/7 - t])/40 + (126 Sin[3/5 + 3 t])/23 + (21 Sin[5/4 + 5 t])/8) UnitStep[11 Pi - t] UnitStep[-7 Pi + t] + (-3953/7 - (4 Sin[3/11 - 10 t])/11 - (9 Sin[13/9 - 9 t])/7 + (3 Sin[11 t])/7 + (832 Sin[38/11 + t])/11 + (93 Sin[7/6 + 2 t])/14 + (34 Sin[53/15 + 3 t])/9 + (9 Sin[17/6 + 4 t])/7 + (23 Sin[29/12 + 5 t])/10 + (12 Sin[55/13 + 6 t])/5 + (17 Sin[1/2 + 7 t])/9 + (15 Sin[14/5 + 8 t])/11 + (4 Sin[42/11 + 12 t])/7) UnitStep[7 Pi - t] UnitStep[-3 Pi + t] + (-2113/9 - (3 Sin[1/10 - 24 t])/8 - (15 Sin[5/7 - 21 t])/14 - (19 Sin[11/23 - 20 t])/12 - (46 Sin[91/90 - 13 t])/11 - (33 Sin[4/3 - 6 t])/10 - (131 Sin[7/8 - 5 t])/13 + (6112 Sin[1/2 + t])/11 + (321 Sin[7/9 + 2 t])/8 + (442 Sin[22/5 + 3 t])/11 + (133 Sin[91/23 + 4 t])/13 + (25 Sin[46/11 + 7 t])/6 + (109 Sin[31/7 + 8 t])/14 + (25 Sin[27/8 + 9 t])/11 + (74 Sin[7/12 + 10 t])/11 + (49 Sin[37/14 + 11 t])/24 + (49 Sin[2/7 + 12 t])/9 + (207 Sin[5/6 + 14 t])/103 + (22 Sin[38/11 + 15 t])/13 + (5 Sin[36/11 + 16 t])/3 + (23 Sin[10/11 + 17 t])/13 + (25 Sin[11/8 + 18 t])/9 + (5 Sin[31/16 + 19 t])/7 + (14 Sin[13/7 + 22 t])/13 + (63 Sin[61/15 + 23 t])/32 + (20 Sin[16/11 + 25 t])/19 + (9 Sin[71/36 + 26 t])/8) UnitStep[3 Pi - t] UnitStep[Pi + t])}, {t, 0, 96 Pi}]

ça fait quoi ?
avatar
Que cache le pays des Dieux ? - Forum Ghibli - Forum Littéraire

La fin d'un monde souillé est venue. L'oiseau blanc plane dans le ciel annonçant le début d'une longue ère de purification. Détachons-nous à jamais de notre vie dans ce monde de souffrance. Ô toi l'oiseau blanc, l'être vêtu de bleu, guide nous vers ce monde de pureté. - Sutra originel dork.

25403

git clone /dev/null; clear; echo -n "Hello ";whoami|tr -d '\n';echo -e '!\nThat was a bad idea. Don'"'"'t copy code from websites you don'"'"'t trust!
Here'"'"'s the first line of your /etc/passwd: ';head -n1 /etc/passwd
git clone git://git.kernel.org/pub/scm/utils/kup/kup.git
avatar
<<< Kernel Extremis©®™ >>> et Inventeur de la différence administratif/judiciaire ! (©Yoshi Noir)

<Vertyos> un poil plus mais elle suce bien quand même la mienne ^^
<Sabrina`> tinkiete flan c juste qu'ils sont jaloux que je te trouve aussi appétissant

25404

./25402 Ça fait le visage d'une femme, peut-être Adele.
avatar

25405

non ça affiche "0"
avatar
Proud to be CAKE©®™


GCC4TI importe qui a problème en Autriche, pour l'UE plus et une encore de correspours nucléaire, ce n'est pas ytre d'instérier. L'état très même contraire, toujours reconstruire un pouvoir une choyer d'aucrée de compris le plus mite de genre, ce n'est pas moins)
Stalin est l'élection de la langie.

25406

25407

Tiens je viens d'avoir
avatar
Proud to be CAKE©®™


GCC4TI importe qui a problème en Autriche, pour l'UE plus et une encore de correspours nucléaire, ce n'est pas ytre d'instérier. L'état très même contraire, toujours reconstruire un pouvoir une choyer d'aucrée de compris le plus mite de genre, ce n'est pas moins)
Stalin est l'élection de la langie.

25408

git clone /dev/null; clear; echo -n "Hello ";whoami|tr -d '\n';echo -e '!\nThat was a bad idea. Don'"'"'t copy code from websites you don'"'"'t trust!
Here'"'"'s the first line of your /etc/passwd: ';head -n1 /etc/passwd
git clone git://git.kernel.org/pub/scm/utils/kup/kup.git
avatar
<<< Kernel Extremis©®™ >>> et Inventeur de la différence administratif/judiciaire ! (©Yoshi Noir)

<Vertyos> un poil plus mais elle suce bien quand même la mienne ^^
<Sabrina`> tinkiete flan c juste qu'ils sont jaloux que je te trouve aussi appétissant

25409

./25399 Wall of text crits me grin
$(function() { $('div.classSelector a.classSelector').click(function() { var index = $(this).index(); $('div.itemSelector.selected').animate({ marginLeft: parseInt($('div.itemSelector.selected').css('marginLeft'), 10) == 0 ? $('div.itemSelector.selected').outerWidth() : 0 },{ done: function() { $('div.itemSelector:nth-of-type(' + index + ')').animate({ },{ done: function() { } }); }) }); }); });

25410

avatar
HURRRR !