vince (./25344) :
pour lancer l'update, veuillez télécharger les sources de l'updater puis le compiler
pour compiler l'updater, merci de télécharger les sources et de compiler.
vince (./25344) :
pour lancer l'update, veuillez télécharger les sources de l'updater puis le compiler
<?php
define("Y_AXIS_STEP_COUNT", 10);
define("Y_AXIS_TEXT_STEP", 5);
define("X_AXIS_STEP_COUNT", 7);
define("X_AXIS_TEXT_STEP", 5);
define("RENDERER_WIDTH", 920);
define("RENDERER_HEIGHT", 320);
define("INNER_PADDING_TOP", 30);
define("INNER_PADDING_LEFT", 20);
$realPoints = array(array(0,5), array(1,10), array(2,15), array(3,20), array(4,10), array(5,0), array(6,9));
?>
<!DOCTYPE html>
<html>
<head>
<title>LeGraph 2.0</title>
<style type="text/css">
svg { color: #333333; border: 1px solid black; }
g.axis > g {
opacity: 1;
}
g.axis {
fill: #aaa;
font-size: 10px;
}
body {
border-radius: 6px;
background: #f3f3f3;
position: relative;
margin-top: 20px;
}
line.tick {
stroke: #e1e1e1;
stroke-width: 1;
shape-rendering: crispedges;
}
.axis text {
font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;
font-size: 11px;
fill: #999;
}
path.path {
fill: none;
stroke: #1db34f;
stroke-width: 2px;
}
</style>
</head>
<body>
<svg width="<?php echo RENDERER_WIDTH; ?>" height="<?php echo RENDERER_HEIGHT; ?>">
<g transform="translate(<?php echo INNER_PADDING_LEFT; ?>,<?php echo INNER_PADDING_TOP; ?>)">
<g class="y axis">
<?php
for ($i = 0; $i < Y_AXIS_STEP_COUNT; ++$i) {
echo '<g transform="translate(-2,'.(((RENDERER_HEIGHT - INNER_PADDING_TOP) / Y_AXIS_STEP_COUNT) * $i).')">';
echo '<line class="tick" x2=' . (RENDERER_WIDTH - INNER_PADDING_LEFT * 2 + 2) . ' y2="0"></line>';
echo '<text x="-3" y="0" dy="0.32em" style="text-anchor: end">' . (Y_AXIS_TEXT_STEP * (Y_AXIS_STEP_COUNT - $i - 1)) . '</text>';
echo '</g>';
}
?>
</g>
<g class="x axis">
<?php
for ($i = 0; $i < X_AXIS_STEP_COUNT; ++$i) {
echo '<g transform="translate('.((RENDERER_WIDTH - INNER_PADDING_LEFT * 2) / (X_AXIS_STEP_COUNT - 1) * $i).','.(RENDERER_HEIGHT - INNER_PADDING_TOP*2+3).')">';
echo '<line class="tick" y2='.(INNER_PADDING_TOP * 2 - RENDERER_HEIGHT - 3).' x2="0"></line>';
echo '<text style="text-anchor: middle" dy="1em">' . (X_AXIS_TEXT_STEP * $i) . '</text>';
echo '</g>';
}
?>
</g>
<path class="path" d="<?php
$yInterval = (RENDERER_HEIGHT - INNER_PADDING_TOP) / Y_AXIS_STEP_COUNT;
$xInterval = (RENDERER_WIDTH - INNER_PADDING_LEFT) / X_AXIS_STEP_COUNT;
for ($i = 0; $i < X_AXIS_STEP_COUNT; ++$i) {
$point = &$realPoints[$i];
$previousPoint = array(0, 0);
if ($i > 0)
$previousPoint = $realPoints[$i - 1];
$command = ($i == 0 ? "M" : "L");
$graphicalX = 0;
$graphicalY = 0;
// The previous point is considered our origin
$graphicalX -=
echo $command . " " . $graphicalX . " " . $graphicalY . " ";
}
?>"><!-- Just the path line -->
</path>
</g>
</svg>
</body>
<?php
class SvgRenderer
{
private $series = array();
private $xLabels = array();
private $yLabels = array();
private $svgWidth = 0;
private $svgHeight = 0;
private $topOffset = 0;
private $leftOffset = 0;
/*
* @description Creates a new SvgRenderer instance
*/
public function __construct($width, $height, $tof = 0, $lof = 0) {
$this->svgWidth = $width;
$this->svgHeight = $height;
$this->topOffset = $tof;
$this->leftOffset = $lof;
}
public function SetSidePadding($padding) { $this->leftOffset = $padding; }
public function SetTopPadding($padding) { $this->topOffset = $padding; }
public function SetXAxisLabel($labels) { $this->xLabels = $labels; }
public function SetYAxisLabel($labels) { $this->yLabels = $labels; }
/*
* @description Adds a serie of points to draw.
* @return Index of the serie added
*/
public function AddSerie($fillColor, $strokeColor, $points) {
if ($this->svgWidth == 0 || $this->svgHeight == 0)
throw new Exception("Tried to add a serie on a SVG that has missing size informations!");
$this->series[] = array('fillColor' => $fillColor, 'strokeColor' => $strokeColor, 'points' => $points);
return count($this->series) - 1;
}
/*
* @description Modifies the filling color for a serie. This color is the color of dots.
* @note If the serie index is not provided, every serie will get the provided fill color.
* @return Nothing
*/
public function SetSerieFillColor($fillColor, $serieIndex = -1) {
for ($i = 0, $l = count($this->series); $i < $l && $serie = &$this->series[$i]; ++$i)
if ($serieIndex == -1 || $i == $serieIndex)
$serie['fillColor'] = $fillColor;
}
/*
* @description Modifies the strokeing color for a serie. This color is the color of dots.
* @note If the serie index is not provided, every serie will get the provided stroke color.
* @return Nothings
*/
public function SetSerieStrokeColor($strokeColor, $serieIndex = -1) {
for ($i = 0, $l = count($this->series); $i < $l && $serie = &$this->series[$i]; ++$i)
if ($serieIndex == -1 || $i == $serieIndex)
$serie['strokeColor'] = $strokeColor;
}
public function Render() {
$innerWidth = $this->svgWidth - $this->leftOffset * 2;
$innerHeight = $this->svgHeight - $this->topOffset * 2;
$yCount = count($this->yLabels);
$xCount = count($this->xLabels);
$htmlNode = '<svg width="'.$this->svgWidth.'" height="'.$this->svgHeight.'">';
$htmlNode .= '<g transform="translate('.$this->leftOffset.','.$this->topOffset.')">';
$htmlNode .= '<g class="y axis" style="fill: #aaa;font-size: 10px;">';
for ($i = 0; $i < $yCount; ++$i) {
$htmlNode .= '<g transform="translate(-6,'.((($this->svgHeight - $this->topOffset) / $yCount) * $i).')">';
$htmlNode .= '<line class="tick" x2=' . ($this->svgWidth - $this->leftOffset * 2 + 6) . ' y2="0" style="stroke: #e1e1e1; stroke-width: 1; shape-rendering: crispedges;"></line>';
$htmlNode .= '<text x="-6" y="0" dy="0.32em" style="text-anchor: end">' . $this->yLabels[$i] . '</text>';
$htmlNode .= '</g>';
}
$htmlNode .= '</g><g class="y axis" style="fill: #aaa;font-size: 10px;">';
for ($i = 0; $i < $xCount; ++$i) {
$htmlNode .= '<g transform="translate('.(($this->svgWidth - $this->leftOffset * 2) / ($xCount - 1) * $i).','.($this->svgHeight - $this->topOffset * 1.5).')">';
$htmlNode .= '<line class="tick" y2='.($this->topOffset * 1.5 - $this->svgHeight).' x2="0" style="stroke: #e1e1e1; stroke-width: 1; shape-rendering: crispedges;"></line>';
$htmlNode .= '<text style="text-anchor: middle" dy="1em">' . $this->xLabels[$i] . '</text>';
$htmlNode .= '</g>';
}
$htmlNode .= '</g>';
$yInterval = ($this->svgHeight - $this->topOffset) / $yCount;
$xInterval = ($this->svgWidth - $this->leftOffset * 2) / ($xCount - 1);
$dotArray = array();
foreach ($this->series as $serie) {
$pointsArray = array();
for ($i = 0; $i < $xCount; ++$i) {
$point = &$serie['points'][$i];
$command = ($i == 0 ? "M" : "L");
$graphicalX = $point[0] * $xInterval;
$graphicalY = $yInterval * ($yCount - $point[1] - 1);
$pointsArray[] = $command . " " . $graphicalX . " " . $graphicalY;
$dotArray[] = array($graphicalX, $graphicalY, $serie['strokeColor'], $serie['fillColor']);
}
$htmlNode .= '<path class="path" style="stroke: '.$serie['strokeColor'].';fill: none;stroke-width: 2px;" d="' . implode(" ", $pointsArray) . '"></path>';
}
// And now, the dots
foreach ($dotArray as &$dot) {
$htmlNode .= '<g class="dot" transform="translate('.$dot[0].','.$dot[1].')" style="stroke: '.$dot[2].'; fill: '.$dot[3].';stroke-width: 2px;">';
$htmlNode .= '<circle r="4"></circle>';
$htmlNode .= '</g>';
}
$htmlNode .= '</g></svg>';
return $htmlNode;
}
}
$a = new SvgRenderer(960, 360, 50, 40);
$a->SetXAxisLabel(array("Monday", "Tuesday", "Wednesday", "Thrusday", "Friday", "Saturday", "Sunday"));
$a->SetYAxisLabel(array(5,10,15,20,25,30,35,40,45,50));
$a->AddSerie('#1db34f', '#16873c', array(array(0,5), array(1,7), array(2,2), array(3,4), array(4,9), array(5,0), array(6,9)));
echo $a->Render();
bearbecue (./25399) :
ParametricPlot[{If[Sin[t/2] < 0, I, 1] ((-2201/7 - (3 Sin[11/12 - 80 t])/8 - (10 Sin[17/13 - 70 t])/13 - (11 Sin[7/6 - 63 t])/10 - (5 Sin[23/15 - 59 t])/2 - (25 Sin[11/7 - 39 t])/3 - (12 Sin[11/9 - 28 t])/5 - (79 Sin[5/8 - 24 t])/20 + (1481 Sin[47/10 + t])/7 + (9162 Sin[14/9 + 2 t])/49 + (1209 Sin[47/10 + 3 t])/14 + (599 Sin[11/7 + 4 t])/13 + (179 Sin[33/7 + 5 t])/8 + (367 Sin[65/14 + 6 t])/13 + (279 Sin[34/23 + 7 t])/8 + (41 Sin[12/7 + 8 t])/4 + (628 Sin[93/20 + 9 t])/7 + (119 Sin[11/7 + 10 t])/8 + (433 Sin[25/17 + 11 t])/8 + (753 Sin[40/27 + 12 t])/8 + (319 Sin[51/11 + 13 t])/12 + (2463 Sin[37/8 + 14 t])/22 + (29 Sin[79/17 + 15 t])/15 + (140 Sin[8/5 + 16 t])/11 + (875 Sin[51/11 + 17 t])/11 + (595 Sin[3/2 + 18 t])/9 + (69 Sin[10/7 + 19 t])/4 + (71 Sin[41/9 + 20 t])/6 + (173 Sin[22/15 + 21 t])/7 + (197 Sin[7/5 + 22 t])/12 + (288 Sin[40/27 + 23 t])/7 + (57 Sin[14/9 + 25 t])/4 + (379 Sin[41/9 + 26 t])/13 + (143 Sin[103/23 + 27 t])/15 + (169 Sin[51/11 + 29 t])/8 + (16 Sin[17/10 + 30 t])/3 + (125 Sin[65/14 + 31 t])/8 + (47 Sin[23/5 + 32 t])/4 + (149 Sin[14/3 + 33 t])/14 + (33 Sin[13/3 + 34 t])/10 + (243 Sin[14/3 + 35 t])/22 + (181 Sin[41/9 + 36 t])/15 + (79 Sin[32/7 + 37 t])/5 + (48 Sin[11/7 + 38 t])/11 + (19 Sin[60/13 + 40 t])/14 + (74 Sin[47/10 + 41 t])/17 + (17 Sin[37/25 + 42 t])/10 + (44 Sin[32/7 + 43 t])/19 + (165 Sin[77/17 + 44 t])/13 + (8 Sin[37/15 + 45 t])/7 + (57 Sin[14/15 + 46 t])/23 + (19 Sin[4/3 + 47 t])/11 + (40 Sin[47/10 + 48 t])/9 + (30 Sin[11/7 + 49 t])/11 + (189 Sin[56/13 + 50 t])/38 + (121 Sin[55/12 + 51 t])/27 + (80 Sin[13/10 + 52 t])/13 + (35 Sin[11/10 + 53 t])/11 + (9 Sin[17/7 + 54 t])/13 + (48 Sin[55/12 + 55 t])/19 + (13 Sin[15/11 + 56 t])/4 + (23 Sin[53/12 + 57 t])/6 + (29 Sin[13/9 + 58 t])/11 + (35 Sin[47/11 + 60 t])/8 + (25 Sin[10/7 + 61 t])/17 + (9 Sin[19/12 + 62 t])/7 + (65 Sin[4/3 + 64 t])/16 + (2 Sin[27/7 + 65 t])/13 + (87 Sin[11/8 + 66 t])/44 + (9 Sin[49/11 + 67 t])/5 + Sin[41/12 + 68 t]/2 + (10 Sin[3/2 + 69 t])/13 + (17 Sin[10/9 + 71 t])/8 + (69 Sin[31/7 + 72 t])/35 + (7 Sin[18/5 + 73 t])/9 + (43 Sin[58/13 + 74 t])/21 + (34 Sin[31/7 + 75 t])/23 + (18 Sin[24/23 + 76 t])/17 + (11 Sin[38/9 + 77 t])/4 + (23 Sin[13/3 + 78 t])/7 + (4 Sin[21/16 + 79 t])/13 + (5 Sin[17/13 + 81 t])/8 + (7 Sin[32/7 + 82 t])/5 + (12 Sin[5/4 + 83 t])/7) UnitStep[95 Pi - t] UnitStep[-91 Pi + t] + (-3313/10 - (74 Sin[11/7 - 20 t])/73 - (18 Sin[14/9 - 18 t])/5 - (225 Sin[11/7 - 9 t])/32 - (5492 Sin[11/7 - t])/11 + (1102 Sin[11/7 + 2 t])/5 + (73 Sin[11/7 + 3 t])/2 + (371 Sin[11/7 + 4 t])/11 + (69 Sin[14/9 + 5 t])/7 + (155 Sin[11/7 + 6 t])/9 + (19 Sin[19/12 + 7 t])/8 + (14 Sin[11/7 + 8 t])/9 + (53 Sin[47/10 + 10 t])/12 + (9 Sin[47/10 + 11 t])/11 + (17 Sin[33/7 + 12 t])/6 + Sin[51/11 + 13 t] + (111 Sin[33/7 + 14 t])/17 + (21 Sin[33/7 + 15 t])/10 + (145 Sin[47/10 + 16 t])/36 + (3 Sin[9/2 + 17 t])/8 + (2 Sin[89/19 + 19 t])/7 + (15 Sin[13/8 + 21 t])/16 + (35 Sin[33/7 + 22 t])/13 + (7 Sin[79/17 + 23 t])/9) UnitStep[91 Pi - t] UnitStep[-87 Pi + t] + (133/4 - (5 Sin[11/7 - 25 t])/9 - Sin[1/34 - 21 t]/12 - (18 Sin[14/9 - 19 t])/13 - (3 Sin[13/9 - 17 t])/2 - (8 Sin[20/13 - 13 t])/13 - (71 Sin[14/9 - 10 t])/13 - (37 Sin[14/9 - 8 t])/12 - (8 Sin[14/9 - 6 t])/11 - (23 Sin[14/9 - 5 t])/13 - (7 Sin[31/21 - 3 t])/4 - (31 Sin[14/9 - 2 t])/12 + (506 Sin[33/7 + t])/5 + (11 Sin[37/8 + 4 t])/8 + Sin[79/40 + 7 t]/9 + (5 Sin[59/29 + 9 t])/16 + (43 Sin[11/7 + 11 t])/14 + (29 Sin[47/10 + 12 t])/8 + (5 Sin[11/8 + 14 t])/14 + (33 Sin[47/10 + 15 t])/4 + (4 Sin[23/13 + 16 t])/9 + (13 Sin[5/3 + 18 t])/9 + (30 Sin[19/12 + 20 t])/17 + (11 Sin[21/13 + 22 t])/9 + (13 Sin[47/10 + 23 t])/10 + (9 Sin[20/13 + 24 t])/8 + Sin[17/11 + 26 t]/6 + Sin[41/9 + 27 t]/15 + (6 Sin[14/3 + 28 t])/13 + (3 Sin[3/2 + 29 t])/7 + (3 Sin[14/9 + 30 t])/11 + (2 Sin[5/3 + 31 t])/9 + (4 Sin[16/11 + 32 t])/11 + (10 Sin[89/19 + 33 t])/19 + (7 Sin[14/3 + 34 t])/9 + Sin[65/14 + 35 t]/4 + Sin[3/8 + 36 t]/35 + Sin[20/13 + 37 t]/9 + Sin[47/11 + 38 t]/35 + (2 Sin[37/8 + 39 t])/9) UnitStep[87 Pi - t] UnitStep[-83 Pi + t] + (3090/7 - Sin[17/11 - 15 t]/3 - (12 Sin[11/7 - 14 t])/11 - Sin[14/9 - 12 t]/3 - Sin[14/9 - 10 t]/6 - (85 Sin[11/7 - 4 t])/9 + (68 Sin[11/7 + t])/9 + (5 Sin[19/12 + 2 t])/14 + (3 Sin[26/17 + 3 t])/7 + (127 Sin[11/7 + 5 t])/10 + (40 Sin[11/7 + 6 t])/9 + (7 Sin[11/7 + 7 t])/4 + (13 Sin[11/7 + 8 t])/11 + (14 Sin[11/7 + 9 t])/15 + Sin[10/7 + 11 t]/49 + (3 Sin[11/7 + 13 t])/4 + (2 Sin[11/7 + 16 t])/13 + (4 Sin[19/12 + 17 t])/11 + Sin[14/9 + 18 t]/7 + (4 Sin[11/7 + 19 t])/9 + Sin[19/12 + 20 t]/4 + Sin[14/9 + 21 t]/6) UnitStep[83 Pi - t] UnitStep[-79 Pi + t] + (1121/3 - Sin[17/11 - 24 t]/19 - (2 Sin[14/9 - 18 t])/5 - Sin[19/13 - 15 t]/8 - (7 Sin[20/13 - 14 t])/20 - Sin[13/9 - 13 t]/20 - (10 Sin[14/9 - 8 t])/9 + (353 Sin[11/7 + t])/12 + (27 Sin[8/5 + 2 t])/20 + (8 Sin[11/7 + 3 t])/3 + (3 Sin[14/3 + 4 t])/8 + (23 Sin[11/7 + 5 t])/10 + (9 Sin[33/7 + 6 t])/11 + Sin[17/11 + 7 t]/2 + (9 Sin[19/12 + 9 t])/11 + Sin[68/15 + 10 t]/11 + (4 Sin[8/5 + 11 t])/7 + Sin[41/9 + 12 t]/19 + Sin[19/12 + 17 t]/8 + Sin[11/7 + 19 t]/4 + Sin[89/19 + 20 t]/8 + Sin[8/5 + 21 t]/6 + Sin[7/6 + 23 t]/93 + Sin[5/3 + 25 t]/9) UnitStep[79 Pi - t] UnitStep[-75 Pi + t] + (61/6 - (5 Sin[17/11 - 25 t])/9 - (7 Sin[14/9 - 9 t])/9 + (379 Sin[11/7 + t])/6 + (101 Sin[11/7 + 2 t])/9 + (79 Sin[11/7 + 3 t])/16 + (29 Sin[19/12 + 4 t])/10 + (27 Sin[19/12 + 5 t])/7 + (13 Sin[8/5 + 6 t])/9 + (3 Sin[8/5 + 7 t])/2 + (3 Sin[11/7 + 8 t])/4 + (7 Sin[19/12 + 10 t])/10 + (3 Sin[47/10 + 11 t])/8 + Sin[8/5 + 12 t]/3 + Sin[13/8 + 13 t]/13 + (2 Sin[13/8 + 14 t])/7 + Sin[14/3 + 15 t]/9 + (5 Sin[19/12 + 16 t])/12 + Sin[61/13 + 17 t]/3 + Sin[19/12 + 18 t]/8 + (2 Sin[8/5 + 19 t])/9 + Sin[33/7 + 20 t]/6 + Sin[19/12 + 21 t]/13 + (2 Sin[19/12 + 22 t])/11 + Sin[33/7 + 23 t]/4 + (2 Sin[14/9 + 24 t])/11 + (2 Sin[11/7 + 26 t])/5) UnitStep[75 Pi - t] UnitStep[-71 Pi + t] + (-2254/5 - (17 Sin[11/7 - 11 t])/16 - (145 Sin[14/9 - 9 t])/48 - (87 Sin[11/7 - 5 t])/8 - (235 Sin[11/7 - 3 t])/9 - (43 Sin[11/7 - 2 t])/2 + (187 Sin[11/7 + t])/10 + (54 Sin[19/12 + 4 t])/11 + (9 Sin[11/7 + 6 t])/5 + (321 Sin[11/7 + 7 t])/80 + 2 Sin[11/7 + 8 t] + Sin[51/11 + 10 t]/15 + (6 Sin[11/7 + 12 t])/13) UnitStep[71 Pi - t] UnitStep[-67 Pi + t] + (-15833/26 - Sin[11/8 - 30 t]/3 - (9 Sin[3/2 - 29 t])/5 - (11 Sin[19/13 - 28 t])/6 - (2 Sin[16/11 - 25 t])/5 - (28 Sin[3/2 - 24 t])/13 - (13 Sin[3/2 - 23 t])/9 - (10 Sin[7/5 - 22 t])/11 - (16 Sin[3/2 - 21 t])/7 - Sin[10/9 - 19 t]/3 - (25 Sin[29/19 - 18 t])/7 - (25 Sin[22/15 - 17 t])/6 - (19 Sin[17/11 - 16 t])/4 - (40 Sin[19/13 - 14 t])/39 - (78 Sin[17/11 - 13 t])/11 - (50 Sin[20/13 - 10 t])/7 - (23 Sin[14/9 - 9 t])/8 - (67 Sin[3/2 - 8 t])/10 - (57 Sin[25/17 - 7 t])/13 - (1709 Sin[14/9 - 6 t])/28 - (745 Sin[14/9 - 5 t])/9 + (129 Sin[11/7 + t])/7 + (487 Sin[11/7 + 2 t])/11 + (640 Sin[33/7 + 3 t])/13 + (3565 Sin[11/7 + 4 t])/44 + (2 Sin[9/7 + 11 t])/11 + (68 Sin[11/7 + 12 t])/13 + (9 Sin[3/2 + 15 t])/5 + (11 Sin[13/8 + 20 t])/10 + Sin[17/12 + 26 t]/6 + (6 Sin[21/13 + 27 t])/7 + (4 Sin[19/12 + 31 t])/3) UnitStep[67 Pi - t] UnitStep[-63 Pi + t] + (-1217/10 - (4 Sin[11/7 - 22 t])/11 - (10 Sin[19/13 - 21 t])/19 - (11 Sin[25/17 - 19 t])/15 - (8 Sin[17/12 - 18 t])/13 - (13 Sin[14/9 - 16 t])/11 - (74 Sin[23/15 - 15 t])/21 - (42 Sin[14/9 - 13 t])/11 - (11 Sin[3/2 - 12 t])/8 - (10 Sin[14/9 - 11 t])/11 - (53 Sin[14/9 - 9 t])/5 - (184 Sin[11/7 - 6 t])/7 - (964 Sin[11/7 - 3 t])/15 - 692 Sin[11/7 - t] + (254 Sin[61/13 + 2 t])/11 + (19 Sin[19/13 + 4 t])/6 + (529 Sin[47/10 + 5 t])/44 + (28 Sin[14/9 + 7 t])/9 + (13 Sin[18/11 + 8 t])/8 + (38 Sin[3/2 + 10 t])/39 + (26 Sin[23/14 + 14 t])/11 + (11 Sin[22/13 + 17 t])/16 + (6 Sin[18/11 + 20 t])/7 + (7 Sin[47/10 + 23 t])/10) UnitStep[63 Pi - t] UnitStep[-59 Pi + t] + (2063/10 + (369 Sin[11/7 + t])/5 + Sin[47/10 + 2 t] + (87 Sin[11/7 + 3 t])/10 + Sin[8/5 + 4 t]/6) UnitStep[59 Pi - t] UnitStep[-55 Pi + t] + (11423/42 + (238 Sin[33/7 + t])/9 + (21 Sin[47/10 + 2 t])/5 + Sin[14/13 + 3 t]/7 + (53 Sin[11/7 + 4 t])/11 + (17 Sin[47/10 + 5 t])/6 + (19 Sin[75/16 + 6 t])/18 + Sin[3/2 + 7 t]/2 + (28 Sin[17/11 + 8 t])/19 + (5 Sin[61/13 + 9 t])/7 + (10 Sin[14/3 + 10 t])/21 + (10 Sin[14/9 + 11 t])/21 + (10 Sin[17/11 + 12 t])/11) UnitStep[55 Pi - t] UnitStep[-51 Pi + t] + (895/3 - (15 Sin[4/3 - 7 t])/14 + (265 Sin[23/15 + t])/14 + (75 Sin[60/13 + 2 t])/8 + (296 Sin[37/8 + 3 t])/11 + (297 Sin[113/25 + 4 t])/37 + (128 Sin[37/8 + 5 t])/17 + (25 Sin[21/13 + 6 t])/11 + (8 Sin[9/5 + 8 t])/9 + (23 Sin[59/13 + 9 t])/9 + (11 Sin[46/11 + 10 t])/9 + (32 Sin[22/5 + 11 t])/11 + (8 Sin[21/5 + 12 t])/7) UnitStep[51 Pi - t] UnitStep[-47 Pi + t] + (3860/17 + (509 Sin[11/7 + t])/17 + (4 Sin[19/12 + 2 t])/9) UnitStep[47 Pi - t] UnitStep[-43 Pi + t] + (2777/17 + (1001 Sin[11/7 + t])/40 + (37 Sin[11/7 + 2 t])/4 + (28 Sin[11/7 + 3 t])/13 + (17 Sin[19/12 + 4 t])/13) UnitStep[43 Pi - t] UnitStep[-39 Pi + t] + (5103/16 + (15 Sin[9/11 + t])/4 + (32 Sin[137/46 + 2 t])/13 + (7 Sin[2/5 + 3 t])/8 + (36 Sin[42/11 + 4 t])/7 + (11 Sin[4/7 + 5 t])/12 + (15 Sin[25/6 + 6 t])/11 + (5 Sin[2/9 + 7 t])/8 + (7 Sin[32/9 + 8 t])/9 + (5 Sin[3/8 + 9 t])/12 + (8 Sin[25/8 + 10 t])/13 + (6 Sin[1/26 + 11 t])/11) UnitStep[39 Pi - t] UnitStep[-35 Pi + t] + (145/9 - (3 Sin[13/25 - 9 t])/10 - (65 Sin[1/2 - 7 t])/64 - (8 Sin[1/32 - 5 t])/9 - (17 Sin[5/12 - 3 t])/6 - (65 Sin[11/21 - 2 t])/16 + (91 Sin[35/8 + t])/16 + (17 Sin[13/4 + 4 t])/11 + (7 Sin[31/9 + 6 t])/15 + (3 Sin[29/9 + 8 t])/5 + (4 Sin[21/8 + 10 t])/11 + (4 Sin[1/20 + 11 t])/11 + (2 Sin[23/7 + 12 t])/5) UnitStep[35 Pi - t] UnitStep[-31 Pi + t] + (1579/5 + (205 Sin[5/6 + t])/7) UnitStep[31 Pi - t] UnitStep[-27 Pi + t] + (69/4 + (221 Sin[5/4 + t])/7) UnitStep[27 Pi - t] UnitStep[-23 Pi + t] + (4484/13 - Sin[14/11 - 12 t]/2 - (5 Sin[3/13 - 11 t])/11 - (6 Sin[15/14 - 8 t])/11 - (7 Sin[4/9 - 7 t])/6 - (23 Sin[1/25 - 3 t])/7 - (34 Sin[11/17 - t])/5 + (641 Sin[41/9 + 2 t])/11 + (17 Sin[75/16 + 4 t])/13 + Sin[59/15 + 5 t]/3 + (41 Sin[46/11 + 6 t])/11 + (5 Sin[21/5 + 9 t])/11 + (19 Sin[42/11 + 10 t])/18) UnitStep[23 Pi - t] UnitStep[-19 Pi + t] + (548/15 - (29 Sin[1/2 - 10 t])/12 - (7 Sin[8/7 - 9 t])/11 - (9 Sin[2/11 - 8 t])/11 - (32 Sin[1 - 6 t])/5 - (8 Sin[2/7 - 5 t])/7 - (3 Sin[1/2 - 4 t])/7 - (757 Sin[7/5 - 2 t])/9 - (133 Sin[1/4 - t])/12 + (69 Sin[4/9 + 3 t])/17 + (17 Sin[5/6 + 7 t])/10 + (9 Sin[17/18 + 11 t])/10 + (7 Sin[2/11 + 12 t])/12) UnitStep[19 Pi - t] UnitStep[-15 Pi + t] + (4113/11 + (425 Sin[23/15 + t])/8 + (15 Sin[121/60 + 2 t])/11 + (26 Sin[16/13 + 3 t])/5 + (9 Sin[17/9 + 4 t])/11 + Sin[13/12 + 5 t]) UnitStep[15 Pi - t] UnitStep[-11 Pi + t] + (186/7 + (1303 Sin[19/12 + t])/10 + (2 Sin[19/9 + 2 t])/5 + (78 Sin[14/9 + 3 t])/7 + (11 Sin[17/7 + 4 t])/9 + (24 Sin[22/13 + 5 t])/7 + (4 Sin[25/9 + 6 t])/5) UnitStep[11 Pi - t] UnitStep[-7 Pi + t] + (2609/12 - (11 Sin[5/7 - 8 t])/17 - (6 Sin[1/5 - 6 t])/5 - (63 Sin[2/3 - 4 t])/16 - (108 Sin[11/7 - 2 t])/13 - (293 Sin[13/9 - t])/3 + (169 Sin[32/7 + 3 t])/56 + (2 Sin[26/15 + 5 t])/7 + (4 Sin[19/14 + 7 t])/7 + (9 Sin[66/65 + 9 t])/10 + Sin[117/29 + 10 t]/6 + Sin[13/5 + 11 t]/3 + (4 Sin[11/21 + 12 t])/13) UnitStep[7 Pi - t] UnitStep[-3 Pi + t] + (349/11 - (4 Sin[7/12 - 23 t])/5 - (17 Sin[5/6 - 19 t])/10 - (19 Sin[1/3 - 16 t])/8 - (13 Sin[17/13 - 11 t])/8 - (47 Sin[7/6 - 9 t])/8 - (227 Sin[3/10 - 4 t])/13 - (394 Sin[4/5 - 2 t])/9 + (5455 Sin[63/32 + t])/12 + (195 Sin[9/10 + 3 t])/7 + (123 Sin[4 + 5 t])/8 + (131 Sin[6/13 + 6 t])/13 + (88 Sin[25/6 + 7 t])/13 + (75 Sin[13/9 + 8 t])/13 + (67 Sin[17/8 + 10 t])/10 + (31 Sin[53/12 + 12 t])/13 + (41 Sin[3/5 + 13 t])/14 + (10 Sin[1/15 + 14 t])/7 + (10 Sin[56/15 + 15 t])/13 + (57 Sin[12/23 + 17 t])/29 + (26 Sin[22/21 + 18 t])/25 + (23 Sin[5/14 + 20 t])/8 + (7 Sin[3/10 + 21 t])/3 + (10 Sin[13/8 + 22 t])/7 + (19 Sin[8/7 + 24 t])/10 + (18 Sin[19/14 + 25 t])/17 + (13 Sin[29/11 + 26 t])/8) UnitStep[3 Pi - t] UnitStep[Pi + t]), If[Sin[t/2] < 0, I, 1] ((3132/13 - (3 Sin[13/9 - 75 t])/8 - (11 Sin[9/8 - 68 t])/8 - (8 Sin[4/9 - 64 t])/7 - (4 Sin[13/11 - 62 t])/11 - (15 Sin[12/25 - 52 t])/13 - (46 Sin[9/17 - 50 t])/31 - (10 Sin[8/13 - 40 t])/13 - (23 Sin[25/17 - 36 t])/6 - (80 Sin[40/27 - 27 t])/11 - (55 Sin[7/5 - 25 t])/7 - (379 Sin[20/13 - 16 t])/27 - (201 Sin[17/11 - 6 t])/11 + (1837 Sin[33/7 + t])/6 + (17 Sin[20/13 + 2 t])/18 + (40 Sin[3/2 + 3 t])/3 + (527 Sin[61/13 + 4 t])/16 + (106 Sin[37/8 + 5 t])/11 + (67 Sin[14/9 + 7 t])/5 + (320 Sin[14/3 + 8 t])/9 + (292 Sin[23/5 + 9 t])/9 + (353 Sin[75/16 + 10 t])/14 + (763 Sin[40/27 + 11 t])/12 + (689 Sin[28/19 + 12 t])/10 + (144 Sin[32/7 + 13 t])/13 + (989 Sin[37/8 + 14 t])/12 + (187 Sin[32/7 + 15 t])/7 + (67 Sin[13/7 + 17 t])/15 + (187 Sin[75/16 + 18 t])/10 + (153 Sin[3/2 + 19 t])/4 + (23 Sin[7/8 + 20 t])/12 + (137 Sin[10/7 + 21 t])/6 + (99 Sin[3/2 + 22 t])/4 + (343 Sin[60/13 + 23 t])/10 + (249 Sin[20/13 + 24 t])/14 + (33 Sin[20/13 + 26 t])/2 + (88 Sin[58/13 + 28 t])/13 + (57 Sin[37/8 + 29 t])/4 + (26 Sin[40/9 + 30 t])/11 + (102 Sin[32/7 + 31 t])/7 + (136 Sin[23/5 + 32 t])/13 + (86 Sin[41/9 + 33 t])/11 + (140 Sin[23/5 + 34 t])/13 + (49 Sin[4/3 + 35 t])/6 + (172 Sin[85/19 + 37 t])/13 + (130 Sin[50/11 + 38 t])/11 + (8 Sin[20/11 + 39 t])/9 + (38 Sin[14/11 + 41 t])/9 + (10 Sin[15/13 + 42 t])/3 + (6 Sin[17/9 + 43 t])/7 + (19 Sin[5/7 + 44 t])/15 + (23 Sin[38/25 + 45 t])/7 + (223 Sin[59/13 + 46 t])/16 + (19 Sin[13/6 + 47 t])/9 + (128 Sin[23/5 + 48 t])/15 + (27 Sin[22/13 + 49 t])/8 + (64 Sin[3/2 + 51 t])/13 + (33 Sin[17/11 + 53 t])/10 + (21 Sin[103/23 + 54 t])/11 + (45 Sin[10/7 + 55 t])/13 + (13 Sin[75/16 + 56 t])/7 + (15 Sin[15/8 + 57 t])/16 + (37 Sin[7/6 + 58 t])/16 + (45 Sin[3/2 + 59 t])/23 + (406 Sin[86/19 + 60 t])/81 + (16 Sin[9/4 + 61 t])/11 + (52 Sin[13/9 + 63 t])/11 + (45 Sin[16/11 + 65 t])/8 + (19 Sin[23/5 + 66 t])/10 + (59 Sin[17/11 + 67 t])/13 + (21 Sin[7/5 + 69 t])/5 + (11 Sin[9/2 + 70 t])/9 + (4 Sin[23/7 + 71 t])/5 + (22 Sin[8/7 + 72 t])/7 + (10 Sin[18/19 + 73 t])/7 + (3 Sin[63/16 + 74 t])/4 + (16 Sin[10/7 + 76 t])/15 + (17 Sin[40/9 + 77 t])/6 + (17 Sin[29/7 + 78 t])/14 + (42 Sin[30/7 + 79 t])/17 + (44 Sin[47/11 + 80 t])/19 + (6 Sin[5/6 + 81 t])/13 + (10 Sin[7/10 + 82 t])/7 + (8 Sin[21/5 + 83 t])/11) UnitStep[95 Pi - t] UnitStep[-91 Pi + t] + (2062/7 - (3 Sin[12/11 - 20 t])/14 - (19 Sin[3/2 - 12 t])/11 - (17 Sin[14/9 - 6 t])/3 - (197 Sin[11/7 - 4 t])/6 + (3611 Sin[33/7 + t])/9 + (7469 Sin[33/7 + 2 t])/30 + (189 Sin[11/7 + 3 t])/4 + (357 Sin[11/7 + 5 t])/11 + (49 Sin[11/7 + 7 t])/4 + (73 Sin[11/7 + 8 t])/11 + (131 Sin[11/7 + 9 t])/13 + (42 Sin[20/13 + 10 t])/11 + (56 Sin[11/7 + 11 t])/5 + (97 Sin[11/7 + 13 t])/9 + (29 Sin[23/15 + 14 t])/13 + (22 Sin[14/9 + 15 t])/3 + (18 Sin[11/7 + 16 t])/7 + (24 Sin[11/7 + 17 t])/5 + (18 Sin[14/9 + 18 t])/7 + (20 Sin[14/9 + 19 t])/3 + (18 Sin[14/9 + 21 t])/5 + (12 Sin[11/7 + 22 t])/7 + (57 Sin[11/7 + 23 t])/29) UnitStep[91 Pi - t] UnitStep[-87 Pi + t] + (-532/5 - Sin[13/9 - 37 t]/8 - Sin[11/9 - 24 t]/5 - (7 Sin[38/25 - 20 t])/6 - (12 Sin[11/7 - 19 t])/7 - (42 Sin[11/7 - 12 t])/17 - (17 Sin[14/9 - 4 t])/6 + (82 Sin[11/7 + t])/11 + (270 Sin[33/7 + 2 t])/13 + (16 Sin[11/7 + 3 t])/17 + (8 Sin[61/13 + 5 t])/5 + (37 Sin[33/7 + 6 t])/36 + (7 Sin[17/11 + 7 t])/6 + (11 Sin[47/10 + 8 t])/14 + (2 Sin[41/20 + 9 t])/13 + (10 Sin[7/5 + 10 t])/13 + (12 Sin[21/13 + 11 t])/5 + (37 Sin[17/11 + 13 t])/7 + (18 Sin[51/11 + 14 t])/7 + (8 Sin[23/14 + 15 t])/5 + (79 Sin[17/11 + 16 t])/7 + (49 Sin[17/11 + 17 t])/13 + (39 Sin[23/5 + 18 t])/19 + (3 Sin[14/9 + 21 t])/11 + (27 Sin[61/13 + 22 t])/26 + (3 Sin[11/7 + 23 t])/8 + (2 Sin[11/6 + 25 t])/11 + (3 Sin[37/8 + 26 t])/13 + (10 Sin[14/9 + 27 t])/11 + (2 Sin[14/3 + 28 t])/9 + Sin[21/10 + 29 t]/94 + (2 Sin[17/11 + 30 t])/11 + Sin[48/11 + 31 t]/5 + (10 Sin[3/2 + 32 t])/19 + (5 Sin[10/7 + 33 t])/7 + (22 Sin[37/8 + 34 t])/21 + (3 Sin[65/14 + 35 t])/7 + (4 Sin[11/8 + 36 t])/11 + Sin[17/9 + 38 t]/7 + Sin[15/11 + 39 t]/8) UnitStep[87 Pi - t] UnitStep[-83 Pi + t] + (-1787/16 - Sin[14/9 - 20 t]/11 - (5 Sin[14/9 - 15 t])/14 - (10 Sin[14/9 - 9 t])/11 - (175 Sin[11/7 - 4 t])/27 - (16 Sin[11/7 - 3 t])/9 - (153 Sin[11/7 - t])/13 + (41 Sin[33/7 + 2 t])/13 + (76 Sin[11/7 + 5 t])/25 + (37 Sin[11/7 + 6 t])/14 + (10 Sin[11/7 + 7 t])/13 + (2 Sin[11/7 + 8 t])/7 + Sin[3/2 + 10 t]/26 + (4 Sin[11/7 + 11 t])/9 + (3 Sin[11/7 + 12 t])/10 + (16 Sin[11/7 + 13 t])/15 + (2 Sin[33/7 + 14 t])/7 + (4 Sin[11/7 + 16 t])/15 + Sin[18/11 + 17 t]/19 + (3 Sin[11/7 + 18 t])/7 + (2 Sin[11/7 + 19 t])/9 + Sin[11/7 + 21 t]/5) UnitStep[83 Pi - t] UnitStep[-79 Pi + t] + (-1954/11 - (3 Sin[26/17 - 19 t])/11 - Sin[20/13 - 18 t]/5 - 2 Sin[17/11 - 12 t] - Sin[29/19 - 11 t]/2 - (14 Sin[11/7 - 9 t])/9 - (46 Sin[11/7 - 7 t])/31 + (136 Sin[11/7 + t])/13 + (45 Sin[11/7 + 2 t])/8 + (19 Sin[11/7 + 3 t])/11 + (4 Sin[18/11 + 4 t])/13 + (27 Sin[19/12 + 5 t])/8 + (9 Sin[19/12 + 6 t])/14 + (61 Sin[11/7 + 8 t])/30 + (5 Sin[19/12 + 10 t])/4 + (13 Sin[21/13 + 13 t])/19 + (5 Sin[13/8 + 14 t])/4 + (32 Sin[13/8 + 15 t])/33 + Sin[9/5 + 16 t]/7 + (7 Sin[21/13 + 17 t])/15 + (5 Sin[18/11 + 20 t])/12 + (10 Sin[18/11 + 21 t])/13 + Sin[42/11 + 22 t]/53 + Sin[16/9 + 23 t]/18 + (4 Sin[18/11 + 24 t])/9 + Sin[20/9 + 25 t]/40) UnitStep[79 Pi - t] UnitStep[-75 Pi + t] + (-1760/9 - (5 Sin[14/9 - 25 t])/8 - (5 Sin[14/9 - 18 t])/9 - Sin[11/7 - 17 t]/3 - (4 Sin[11/7 - 15 t])/5 - (10 Sin[11/7 - 11 t])/7 - (36 Sin[11/7 - 9 t])/11 + (50 Sin[33/7 + t])/7 + (79 Sin[11/7 + 2 t])/7 + (45 Sin[33/7 + 3 t])/8 + (16 Sin[11/7 + 4 t])/7 + (3 Sin[14/9 + 5 t])/11 + (5 Sin[75/16 + 6 t])/11 + (31 Sin[19/12 + 7 t])/15 + (10 Sin[11/7 + 8 t])/13 + (12 Sin[11/7 + 10 t])/7 + (18 Sin[13/8 + 12 t])/13 + (56 Sin[8/5 + 13 t])/13 + (31 Sin[21/13 + 14 t])/13 + (4 Sin[11/7 + 16 t])/9 + (4 Sin[21/13 + 19 t])/3 + (2 Sin[17/10 + 20 t])/5 + (6 Sin[8/5 + 21 t])/11 + (2 Sin[8/5 + 22 t])/11 + Sin[30/7 + 23 t]/15 + (4 Sin[21/13 + 24 t])/7 + (4 Sin[23/15 + 26 t])/9) UnitStep[75 Pi - t] UnitStep[-71 Pi + t] + (-1284/5 - (265 Sin[11/7 - 2 t])/13 - (64 Sin[11/7 - t])/7 + (656 Sin[11/7 + 3 t])/15 + (25 Sin[11/7 + 4 t])/3 + (36 Sin[14/9 + 5 t])/35 + Sin[20/13 + 6 t]/10 + (5 Sin[11/7 + 7 t])/8 + (7 Sin[11/7 + 8 t])/13 + (11 Sin[11/7 + 9 t])/5 + (11 Sin[11/7 + 10 t])/8 + (37 Sin[11/7 + 11 t])/14 + Sin[49/11 + 12 t]/32) UnitStep[71 Pi - t] UnitStep[-67 Pi + t] + (-5987/9 - (24 Sin[20/13 - 29 t])/5 - (14 Sin[7/5 - 28 t])/5 - (13 Sin[29/19 - 27 t])/4 - (93 Sin[11/7 - 24 t])/92 - (9 Sin[14/9 - 21 t])/2 - (62 Sin[3/2 - 18 t])/17 - (35 Sin[41/27 - 17 t])/3 - (67 Sin[29/19 - 16 t])/8 - (103 Sin[14/9 - 13 t])/10 - (151 Sin[14/9 - 7 t])/11 - (535 Sin[17/11 - 6 t])/9 - (1483 Sin[14/9 - 5 t])/9 - (82 Sin[14/9 - 2 t])/3 + (295 Sin[11/7 + t])/7 + (1255 Sin[33/7 + 3 t])/33 + (241 Sin[11/7 + 4 t])/3 + (181 Sin[17/11 + 8 t])/14 + (96 Sin[5/3 + 9 t])/19 + (14 Sin[17/12 + 10 t])/11 + (73 Sin[33/7 + 11 t])/11 + (43 Sin[11/7 + 12 t])/4 + (55 Sin[11/7 + 14 t])/7 + (23 Sin[20/13 + 15 t])/14 + (7 Sin[13/9 + 19 t])/8 + (37 Sin[13/8 + 20 t])/8 + (22 Sin[19/12 + 22 t])/7 + (4 Sin[27/16 + 23 t])/3 + (43 Sin[27/16 + 25 t])/44 + (9 Sin[25/17 + 26 t])/11 + (28 Sin[14/9 + 30 t])/9 + (2 Sin[9/2 + 31 t])/5) UnitStep[67 Pi - t] UnitStep[-63 Pi + t] + (-8623/9 - (17 Sin[20/13 - 23 t])/8 - (4 Sin[3/2 - 22 t])/9 - (19 Sin[17/11 - 20 t])/6 - (13 Sin[3/2 - 18 t])/14 - (11 Sin[17/11 - 17 t])/10 - (32 Sin[14/9 - 16 t])/9 - (172 Sin[17/11 - 14 t])/19 - (39 Sin[17/11 - 11 t])/10 - (83 Sin[14/9 - 8 t])/5 - (172 Sin[11/7 - 6 t])/7 - (5083 Sin[11/7 - 4 t])/42 - (100 Sin[14/9 - 2 t])/7 - (131 Sin[14/9 - t])/11 + (373 Sin[11/7 + 3 t])/6 + (183 Sin[47/10 + 5 t])/8 + (104 Sin[20/13 + 7 t])/35 + (428 Sin[19/12 + 9 t])/39 + Sin[13/10 + 10 t]/5 + (20 Sin[47/10 + 12 t])/13 + (7 Sin[93/20 + 13 t])/8 + (17 Sin[61/13 + 15 t])/10 + (25 Sin[8/5 + 19 t])/9 + (4 Sin[19/12 + 21 t])/11) UnitStep[63 Pi - t] UnitStep[-59 Pi + t] + (-3271/6 + Sin[13/10 + t]/69 + (7 Sin[11/7 + 2 t])/9 + (65 Sin[11/7 + 3 t])/14 + Sin[19/12 + 4 t]/8) UnitStep[59 Pi - t] UnitStep[-55 Pi + t] + (-3549/8 - (13 Sin[11/7 - 10 t])/20 - Sin[7/9 - 9 t]/51 - (488 Sin[11/7 - 2 t])/15 + (39 Sin[19/12 + t])/5 + (30 Sin[61/13 + 3 t])/13 + (17 Sin[47/10 + 4 t])/11 + Sin[11/7 + 5 t]/5 + (20 Sin[33/7 + 6 t])/9 + (5 Sin[61/13 + 7 t])/11 + (36 Sin[47/10 + 8 t])/37 + Sin[23/5 + 11 t]/14 + (11 Sin[65/14 + 12 t])/23) UnitStep[55 Pi - t] UnitStep[-51 Pi + t] + (-2227/9 - (9 Sin[19/13 - 7 t])/13 - (57 Sin[3/2 - 5 t])/13 + (1409 Sin[75/16 + t])/9 + (155 Sin[19/12 + 2 t])/11 + (511 Sin[33/7 + 3 t])/34 + (19 Sin[29/12 + 4 t])/12 + (7 Sin[23/8 + 6 t])/11 + (16 Sin[9/7 + 8 t])/15 + Sin[26/7 + 9 t]/9 + (4 Sin[16/13 + 10 t])/3 + (3 Sin[77/17 + 11 t])/4 + (5 Sin[19/12 + 12 t])/8) UnitStep[51 Pi - t] UnitStep[-47 Pi + t] + (-4101/11 - (42 Sin[11/7 - 2 t])/11 + (19 Sin[11/7 + t])/8) UnitStep[47 Pi - t] UnitStep[-43 Pi + t] + (-3113/8 - (38 Sin[11/7 - 3 t])/11 - (399 Sin[11/7 - t])/13 + (92 Sin[11/7 + 2 t])/11 + (3 Sin[11/7 + 4 t])/4) UnitStep[43 Pi - t] UnitStep[-39 Pi + t] + (-4107/31 - Sin[20/13 - 7 t]/4 - (7 Sin[1 - 6 t])/12 - (40 Sin[2/3 - 4 t])/7 - (13 Sin[9/8 - 3 t])/8 + (43 Sin[11/6 + t])/21 + (12 Sin[20/9 + 2 t])/5 + (9 Sin[23/7 + 5 t])/8 + (4 Sin[2/9 + 8 t])/15 + (5 Sin[44/13 + 9 t])/13 + (2 Sin[9/8 + 10 t])/11 + (2 Sin[13/6 + 11 t])/7) UnitStep[39 Pi - t] UnitStep[-35 Pi + t] + (-3675/26 - (19 Sin[3/2 - 4 t])/18 - (31 Sin[11/9 - t])/10 + (50 Sin[13/10 + 2 t])/7 + (36 Sin[17/18 + 3 t])/13 + (3 Sin[7/9 + 5 t])/5 + (2 Sin[33/10 + 6 t])/3 + (7 Sin[1/3 + 7 t])/10 + (4 Sin[48/13 + 8 t])/9 + (5 Sin[1/5 + 9 t])/12 + (2 Sin[23/8 + 10 t])/5 + (2 Sin[4/7 + 11 t])/9 + (3 Sin[154/51 + 12 t])/10) UnitStep[35 Pi - t] UnitStep[-31 Pi + t] + (-1842/13 - (335 Sin[5/8 - t])/11) UnitStep[31 Pi - t] UnitStep[-27 Pi + t] + (-2661/19 - (223 Sin[4/13 - t])/9) UnitStep[27 Pi - t] UnitStep[-23 Pi + t] + (-1336/11 - (17 Sin[4/11 - 11 t])/11 - 4 Sin[7/13 - 7 t] - (8 Sin[36/35 - 5 t])/5 - (317 Sin[7/12 - 3 t])/17 + (379 Sin[8/17 + t])/14 + (163 Sin[26/9 + 2 t])/8 + (71 Sin[21/5 + 4 t])/10 + (17 Sin[17/8 + 6 t])/13 + (17 Sin[38/9 + 8 t])/8 + (35 Sin[1/49 + 9 t])/36 + (9 Sin[28/11 + 10 t])/8 + (6 Sin[85/21 + 12 t])/7) UnitStep[23 Pi - t] UnitStep[-19 Pi + t] + (-525/4 - (30 Sin[13/11 - 8 t])/31 - (17 Sin[14/11 - 5 t])/9 - (68 Sin[3/2 - 4 t])/11 - (541 Sin[3/8 - 3 t])/27 + (348 Sin[9/13 + t])/11 + (283 Sin[58/19 + 2 t])/16 + (23 Sin[2 + 6 t])/9 + (59 Sin[6/19 + 7 t])/16 + Sin[14/3 + 9 t]/2 + (23 Sin[19/8 + 10 t])/10 + (27 Sin[11/16 + 11 t])/20 + (7 Sin[29/10 + 12 t])/9) UnitStep[19 Pi - t] UnitStep[-15 Pi + t] + (-2 - (26 Sin[17/11 - 4 t])/9 - (69 Sin[17/12 - 2 t])/14 + (73 Sin[20/21 + t])/3 + (38 Sin[3/7 + 3 t])/13 + (29 Sin[2/5 + 5 t])/13) UnitStep[15 Pi - t] UnitStep[-11 Pi + t] + (-95/32 - (21 Sin[10/9 - 6 t])/8 - (46 Sin[4/3 - 4 t])/9 - (227 Sin[16/13 - 2 t])/10 - (681 Sin[1/7 - t])/40 + (126 Sin[3/5 + 3 t])/23 + (21 Sin[5/4 + 5 t])/8) UnitStep[11 Pi - t] UnitStep[-7 Pi + t] + (-3953/7 - (4 Sin[3/11 - 10 t])/11 - (9 Sin[13/9 - 9 t])/7 + (3 Sin[11 t])/7 + (832 Sin[38/11 + t])/11 + (93 Sin[7/6 + 2 t])/14 + (34 Sin[53/15 + 3 t])/9 + (9 Sin[17/6 + 4 t])/7 + (23 Sin[29/12 + 5 t])/10 + (12 Sin[55/13 + 6 t])/5 + (17 Sin[1/2 + 7 t])/9 + (15 Sin[14/5 + 8 t])/11 + (4 Sin[42/11 + 12 t])/7) UnitStep[7 Pi - t] UnitStep[-3 Pi + t] + (-2113/9 - (3 Sin[1/10 - 24 t])/8 - (15 Sin[5/7 - 21 t])/14 - (19 Sin[11/23 - 20 t])/12 - (46 Sin[91/90 - 13 t])/11 - (33 Sin[4/3 - 6 t])/10 - (131 Sin[7/8 - 5 t])/13 + (6112 Sin[1/2 + t])/11 + (321 Sin[7/9 + 2 t])/8 + (442 Sin[22/5 + 3 t])/11 + (133 Sin[91/23 + 4 t])/13 + (25 Sin[46/11 + 7 t])/6 + (109 Sin[31/7 + 8 t])/14 + (25 Sin[27/8 + 9 t])/11 + (74 Sin[7/12 + 10 t])/11 + (49 Sin[37/14 + 11 t])/24 + (49 Sin[2/7 + 12 t])/9 + (207 Sin[5/6 + 14 t])/103 + (22 Sin[38/11 + 15 t])/13 + (5 Sin[36/11 + 16 t])/3 + (23 Sin[10/11 + 17 t])/13 + (25 Sin[11/8 + 18 t])/9 + (5 Sin[31/16 + 19 t])/7 + (14 Sin[13/7 + 22 t])/13 + (63 Sin[61/15 + 23 t])/32 + (20 Sin[16/11 + 25 t])/19 + (9 Sin[71/36 + 26 t])/8) UnitStep[3 Pi - t] UnitStep[Pi + t])}, {t, 0, 96 Pi}]
$(function() {
$('div.classSelector a.classSelector').click(function() {
var index = $(this).index();
$('div.itemSelector.selected').animate({
marginLeft: parseInt($('div.itemSelector.selected').css('marginLeft'), 10) == 0 ? $('div.itemSelector.selected').outerWidth() : 0
},{
done: function() {
$('div.itemSelector:nth-of-type(' + index + ')').animate({
},{
done: function() {
}
});
})
});
});
});